Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
情報検索2
Search
nishi-k
March 01, 2016
Education
0
110
情報検索2
nishi-k
March 01, 2016
Tweet
Share
More Decks by nishi-k
See All by nishi-k
自動抽出した換喩表現を用いた係り受け関係のずれの解消
nishiyama
0
360
日本語解析システム「雪だるま」における表記ゆれの拡張とまとめあげ
nishiyama
0
1.1k
多段解析法による形態素解析を用いた音声合成用読み韻律情報設定法とその単語辞書構成
nishiyama
0
210
画像検索を用いた語義別画像付き辞書の構築
nishiyama
0
180
質問応答に基づく対災害情報分析システム
nishiyama
0
250
対話システム
nishiyama
0
300
動詞名詞換言辞書の構築と敬語の常体への換言
nishiyama
0
530
2016/02/17 情報検索
nishiyama
0
150
文脈の解析
nishiyama
0
450
Other Decks in Education
See All in Education
HyRead2526
cbtlibrary
0
170
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
3k
The World That Saved Me: A Story of Community and Gratitude
_hashimo2
3
410
Microsoft Office 365
matleenalaakso
0
2k
子どもが自立した学習者となるデジタルの活用について
naokikato
PRO
0
160
GOVERNOR ADDRESS:2025年9月29日合同公式訪問例会:2720 Japan O.K. ロータリーEクラブ、2025年10月6日卓話:藤田 千克由 氏(国際ロータリー第2720地区 2025-2026年度 ガバナー・大分中央ロータリークラブ・大分トキハタクシー(株)顧問)
2720japanoke
0
720
ThingLink
matleenalaakso
28
4.2k
1014
cbtlibrary
0
500
Node-REDで広がるプログラミング教育の可能性
ueponx
1
220
アジャイルの知見から新卒研修作り、そして組織作り
pokotyamu
0
120
1111
cbtlibrary
0
240
Padlet opetuksessa
matleenalaakso
9
15k
Featured
See All Featured
Side Projects
sachag
455
43k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
28
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
86
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
A designer walks into a library…
pauljervisheath
210
24k
Rails Girls Zürich Keynote
gr2m
95
14k
Test your architecture with Archunit
thirion
1
2.1k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
28
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
0
160
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
sira's awesome portfolio website redesign presentation
elsirapls
0
87
Transcript
-情報検索(2)- 第9回 B3勉強会 2016年2月3日 自然言語処理研究室 学部3年 西山 浩気
はじめに 参考文献 黒橋 貞夫, 自然言語処理, 放送大学教 育振興会,(2015.3.20),pp.146-153 発表内容
◦ 1. 情報検索の評価 ◦ 2. ウェブ検索の仕組み ◦ 3. ページランク
前回の復習 クエリ ◦ 検索したい内容を表現する語集合 例: 「言語 コンピュータ」で検索
1万件以上がマッチする ⇒ 関連度の高い文章でランキングする必要がある! ベクトル空間モデル ◦ ベクトル間の類似度を用いてクエリに対する 文書のランキングを行う cos (d 文書1 , q) = 0.83 cos (d 文書2 , q) = 0.38 cos (d 文書3 , q) = 0.74 cos (d 文書4 , q) = 0.30 cos (d 文書5 , q) = 0.00
情報検索の評価 評価の尺度 ◦ 適合率 (precision) ◦ 再現率 (recall) ◦
F値 (F-measure) d 4 d 5 d 2 d 1 d 3 d 6 d 7 d 8 d 9 d 11 d 10 d 12 d 13 d 14 d 15 関連する文章 システムが 選択した文章 検索対象文章全体
適合率、再現率、F値 適合率 = |システムの選択文書 ∩ 関連文書| |システムの選択文書| = 3
/ 6 = 0.5 再現率 = |システムの選択文書 ∩ 関連文書| |関連文書| = 3 / 5 = 0.6 F値 = 2 × 適合率 × 再現率 適合率 + 再現率 = 2 × 0.5 × 0.6 = 0.6 0.5 + 0.6
適合率・再現率・F値 ◦ 各文書が関連するか否か 多くの文書から必要な文書を抽出するためにはラン ク付きで返すことが重要 平均適合率(average precision)
: AP(q) ◦ AP(q) = n : qに関連のある文書数 r k : システムのランキングの中でk 番目の関連文書 のランキング MAP(mean average precision)
MAP(mean average precision) d 4 d 5 d 2 d
1 d 3 d 6 d 7 d 8 d 9 d 11 d 10 d 12 d 13 d 14 d 15 検索対象文書全体 システムが15個の文書をランキング 関連文書 d 10 d 1 d 2 d 11 d 3 d 4 d 5 d 12 d 6 d 13 d 7 d 14 d 8 d 9 d 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MAP(mean average precision) m個の評価クエリの集合 Q ◦ Q = {
q 1 ,q 2 ,...q m }
ウェブ検索の仕組み 誘導型(navigational) ◦ 存在することが予想されるページを見つ けることが目的(企業や行政) クエリは企業名など クエリとは独立に、ページの重要度を考える
調査型(informational) ◦ 何を調べたいかが明確でない クエリとページの関連度が重要 ページの重要度も重要
クローラー(crawler) ◦ ウェブページを収集するソフトウェア 日本語のウェブページ ◦ 100億以上 ◦ 全言語では1000億以上
ページの誕生・消滅、 既存ページの更新が行われる中で 新しいページを収集 ウェブ検索の仕組み ハイパー リンク ウェブ ページ1 ウェブ ページ2 ウェブ ページ3 クローラー
ページランク ページランク(PageRank) ◦ ハイパーリンクによるウェブの構造のみを利用 してページの重要度を計算するアルゴリズム 考え方:「重要なページは重要なページからリンク されている」
ページu の重要度PR(u) ◦ B u : ページuをリンクしてるページの集合 ◦ L v : ページvからのリンク数 ◦ N : 検索対象とするウェブページの総数 ◦ D: ダンピング・ファクター (0.85程度)
ページランク PR(A): 0.20 PR(B): 0.12 ページA ページB ページC 0.1 0.1
0.04 0.04 0.04 ページD 0.05 0.05 0.07 0.07 PR(C): 0.14 PR(D): 0.1