Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
情報検索2
Search
nishi-k
March 01, 2016
Education
0
120
情報検索2
nishi-k
March 01, 2016
Tweet
Share
More Decks by nishi-k
See All by nishi-k
自動抽出した換喩表現を用いた係り受け関係のずれの解消
nishiyama
0
360
日本語解析システム「雪だるま」における表記ゆれの拡張とまとめあげ
nishiyama
0
1.2k
多段解析法による形態素解析を用いた音声合成用読み韻律情報設定法とその単語辞書構成
nishiyama
0
210
画像検索を用いた語義別画像付き辞書の構築
nishiyama
0
180
質問応答に基づく対災害情報分析システム
nishiyama
0
250
対話システム
nishiyama
0
310
動詞名詞換言辞書の構築と敬語の常体への換言
nishiyama
0
540
2016/02/17 情報検索
nishiyama
0
160
文脈の解析
nishiyama
0
450
Other Decks in Education
See All in Education
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
Linguaxes de programación
irocho
0
530
滑空スポーツ講習会2025(実技講習)EMFT講習 実施要領/JSA EMFT 2025 procedure
jsaseminar
0
110
2025-10-30 社会と情報2025 #05 CC+の代わり
mapconcierge4agu
0
110
Introduction - Lecture 1 - Information Visualisation (4019538FNR)
signer
PRO
0
5.1k
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
いわゆる「ふつう」のキャリアを歩んだ人の割合(若者向け)
hysmrk
0
310
【旧:ZEPメタバース校舎操作ガイド】
ainischool
0
800
20251119 如果是勇者欣美爾的話, 他會怎麼做? 東海資工
pichuang
0
170
SJRC 2526
cbtlibrary
0
200
令和エンジニアの学習法 〜 生成AIを使って挫折を回避する 〜
moriga_yuduru
0
240
おひとり様Organizations管理者もルートアクセス管理を有効にしよう!
amarelo_n24
1
100
Featured
See All Featured
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
77
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Side Projects
sachag
455
43k
Building Applications with DynamoDB
mza
96
6.9k
The Language of Interfaces
destraynor
162
26k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
Optimising Largest Contentful Paint
csswizardry
37
3.6k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Why Our Code Smells
bkeepers
PRO
340
58k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
[SF Ruby Conf 2025] Rails X
palkan
1
760
Transcript
-情報検索(2)- 第9回 B3勉強会 2016年2月3日 自然言語処理研究室 学部3年 西山 浩気
はじめに 参考文献 黒橋 貞夫, 自然言語処理, 放送大学教 育振興会,(2015.3.20),pp.146-153 発表内容
◦ 1. 情報検索の評価 ◦ 2. ウェブ検索の仕組み ◦ 3. ページランク
前回の復習 クエリ ◦ 検索したい内容を表現する語集合 例: 「言語 コンピュータ」で検索
1万件以上がマッチする ⇒ 関連度の高い文章でランキングする必要がある! ベクトル空間モデル ◦ ベクトル間の類似度を用いてクエリに対する 文書のランキングを行う cos (d 文書1 , q) = 0.83 cos (d 文書2 , q) = 0.38 cos (d 文書3 , q) = 0.74 cos (d 文書4 , q) = 0.30 cos (d 文書5 , q) = 0.00
情報検索の評価 評価の尺度 ◦ 適合率 (precision) ◦ 再現率 (recall) ◦
F値 (F-measure) d 4 d 5 d 2 d 1 d 3 d 6 d 7 d 8 d 9 d 11 d 10 d 12 d 13 d 14 d 15 関連する文章 システムが 選択した文章 検索対象文章全体
適合率、再現率、F値 適合率 = |システムの選択文書 ∩ 関連文書| |システムの選択文書| = 3
/ 6 = 0.5 再現率 = |システムの選択文書 ∩ 関連文書| |関連文書| = 3 / 5 = 0.6 F値 = 2 × 適合率 × 再現率 適合率 + 再現率 = 2 × 0.5 × 0.6 = 0.6 0.5 + 0.6
適合率・再現率・F値 ◦ 各文書が関連するか否か 多くの文書から必要な文書を抽出するためにはラン ク付きで返すことが重要 平均適合率(average precision)
: AP(q) ◦ AP(q) = n : qに関連のある文書数 r k : システムのランキングの中でk 番目の関連文書 のランキング MAP(mean average precision)
MAP(mean average precision) d 4 d 5 d 2 d
1 d 3 d 6 d 7 d 8 d 9 d 11 d 10 d 12 d 13 d 14 d 15 検索対象文書全体 システムが15個の文書をランキング 関連文書 d 10 d 1 d 2 d 11 d 3 d 4 d 5 d 12 d 6 d 13 d 7 d 14 d 8 d 9 d 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MAP(mean average precision) m個の評価クエリの集合 Q ◦ Q = {
q 1 ,q 2 ,...q m }
ウェブ検索の仕組み 誘導型(navigational) ◦ 存在することが予想されるページを見つ けることが目的(企業や行政) クエリは企業名など クエリとは独立に、ページの重要度を考える
調査型(informational) ◦ 何を調べたいかが明確でない クエリとページの関連度が重要 ページの重要度も重要
クローラー(crawler) ◦ ウェブページを収集するソフトウェア 日本語のウェブページ ◦ 100億以上 ◦ 全言語では1000億以上
ページの誕生・消滅、 既存ページの更新が行われる中で 新しいページを収集 ウェブ検索の仕組み ハイパー リンク ウェブ ページ1 ウェブ ページ2 ウェブ ページ3 クローラー
ページランク ページランク(PageRank) ◦ ハイパーリンクによるウェブの構造のみを利用 してページの重要度を計算するアルゴリズム 考え方:「重要なページは重要なページからリンク されている」
ページu の重要度PR(u) ◦ B u : ページuをリンクしてるページの集合 ◦ L v : ページvからのリンク数 ◦ N : 検索対象とするウェブページの総数 ◦ D: ダンピング・ファクター (0.85程度)
ページランク PR(A): 0.20 PR(B): 0.12 ページA ページB ページC 0.1 0.1
0.04 0.04 0.04 ページD 0.05 0.05 0.07 0.07 PR(C): 0.14 PR(D): 0.1