Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
対話システム
Search
nishi-k
March 25, 2016
Education
0
250
対話システム
nishi-k
March 25, 2016
Tweet
Share
More Decks by nishi-k
See All by nishi-k
自動抽出した換喩表現を用いた係り受け関係のずれの解消
nishiyama
0
310
日本語解析システム「雪だるま」における表記ゆれの拡張とまとめあげ
nishiyama
0
1k
多段解析法による形態素解析を用いた音声合成用読み韻律情報設定法とその単語辞書構成
nishiyama
0
180
画像検索を用いた語義別画像付き辞書の構築
nishiyama
0
150
質問応答に基づく対災害情報分析システム
nishiyama
0
220
動詞名詞換言辞書の構築と敬語の常体への換言
nishiyama
0
460
情報検索2
nishiyama
0
87
2016/02/17 情報検索
nishiyama
0
120
文脈の解析
nishiyama
0
350
Other Decks in Education
See All in Education
Algo de fontes de alimentación
irocho
1
480
HyRead2425
cbtlibrary
0
120
Nodiレクチャー 「CGと数学」講義資料 2024/11/19
masatatsu
1
300
Unraveling JavaScript Prototypes
debug_mode
0
140
Bitcoin Lightning Network en pratique
rlifchitz
0
110
Mathematics used in cryptography around us
herumi
2
740
(説明資料)オンラインゆっくり相談室
ytapples613
PRO
0
150
ISMS審査準備ブック_サンプル【LRM 情報セキュリティお役立ち資料】
lrm
0
1.1k
Ch2_-_Partie_1.pdf
bernhardsvt
0
140
生成AIと歩むこれからの大学
gmoriki
0
960
リバースバケットリスト 〜 「死ぬまでにやることリスト」の欠点と対処法
takibi333
0
120
【お子さま向け】Amazon ECS サービスディスカバリーって知ってる?【楽しい読み聞かせ】
tubone24
7
830
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
98
5.4k
Practical Orchestrator
shlominoach
186
10k
Building an army of robots
kneath
303
45k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Visualization
eitanlees
146
15k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Producing Creativity
orderedlist
PRO
344
39k
Typedesign – Prime Four
hannesfritz
40
2.5k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
How GitHub (no longer) Works
holman
314
140k
Transcript
対話システム 第11回 学部3年ゼミ 自然言語処理研究室 西山 浩気
はじめに 参考文献 ◦ 黒橋 貞夫, 自然言語処理, 放送大学教育振 興会, 2015.3.20,
pp.155-165 発表内容 ◦ 対話システムの歴史 ◦ 発話の意味 ◦ 質問応答
対話システムの歴史(1/5) 対話システムとは? ◦ 人と自由に対話するシステムやロボット HAL,ドラえもん, 鉄腕アトム ... ◦
代表的なシステム ELIZA SHRDLU
対話システムの歴史(2/5) ELIZA ◦ 精神療法におけるカウンセリングの状況 を模倣したシステム 発話の中身を理解することは一切しない Emacs
の “M-x doctor” で動く 例: リンゴが私にとっておいしすぎるんです. なぜあなたはリンゴがおいしすぎると言うの ?
対話システムの歴史(3/5) SHRDLU ◦ 相手の言葉の意味を理解することを目指す ◦ 『ロボットアームで積み木を操作する』 という単純な世界に対話内容を限定 ◦ 例:
◦ ユーザー側 Pick up a red block. ◦ システム側 Ok.
対話システムの歴史(4/5) システムの問題点 ◦ ELIZA 対話は表層的なもの ◦ SHRDLE 対象をより現実的な世界に拡張することが困難
⇒ どちらもテキスト入力によるシステム 1990年:音声による対話システムが構築 2000年:自動音声応答の入力をテンキーから 音声発話に置き換えるサービスが開始
対話システムの歴史(5/5) Siri ◦ 音声対話システム ◦ ELIZA型の雑談に機能を追加 携帯端末操作, 質問応答
しゃべってコンシェル ◦ NTTドコモ 音声アシスト ◦ Yahoo! JAPAN ⇒自然言語処理技術の進歩、 クラウド型音声認識での大幅な性能向上
発話の意味(1/4) 対話における発話 ◦ 前後の文、場面、状況などの文脈に依存 ◦ 語用論 文脈に基づく発話の意味を扱う分野 ⇒
人間の発話の意味 について考える
発話の意味(2/4) 人間の発話 ◦ 聞き手に対する働きかけ ◦ 自分の意思の表明 依頼・勧誘・命令・約束・宣告 ◦
字面の意味を超えて解釈が必要な場合がある ◦ 例: ◦ 日曜日は暇ですか. 日曜日に遊びに行こう (勧誘) ◦ ちょっと暑いですね. エアコンを入れてください (依頼) ⇒ 間接発話行為: 間接的に意味を伝達すること
発話の意味(3/4) 会話には普段複雑な解釈が必要 ⇒ 普段、会話は円滑に進んでいる → 何らかの規則がある? 会話の公理 (maxims
of conversation) ◦ 量(quantity)の公理 必要かつ十分な情報を提示すること ◦ 質(quality)の公理 真実性のある情報を提示すること ◦ 関係性(relevance)の公理 関連性のある情報を提示すること ◦ 様式(manner)の公理 明確で簡潔な形で情報を提示すること
発話の意味(4/4) 質問: 日曜日は暇ですか? ◦ 答え: 月曜日に試験があります ◦ 質問に答えていない
(質, 様式の)公理に反している → 公理に反するには理由があるはず → この答えは肯定でも否定でもない しかし、関連性の公理は守られていると仮定 ⇒ 遠まわしに勧誘を断っていることが分かる
質問応答 質問応答 ◦ 質問に対してその答えを明確に抽出して 答えるタスク 事実型質問 ◦ 具体的な事実を問う問題
◦ 例: 富士山の高さは何[m] ですか? 答えは 長さを表す数値表現 「富士山 高さ」で情報検索 ランキングを行い、最上位のものを答えとする.