Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【poke2vec】ポケモンの役割ベクトルの 学習とその分析・可視化 / pyconjp-po...
Search
odanado
PRO
September 18, 2018
Programming
3
5.5k
【poke2vec】ポケモンの役割ベクトルの 学習とその分析・可視化 / pyconjp-poke2vec
odanado
PRO
September 18, 2018
Tweet
Share
More Decks by odanado
See All by odanado
Vitest Browser Mode への期待 / Vitest Browser Mode
odanado
PRO
2
3.4k
@nestjs/bull の活用について
odanado
PRO
0
1.3k
クラウド KMS の活用 / TOKYO BLOCKCHAIN TECH MEETUP 2022
odanado
PRO
0
1.1k
Vue.observable で状態管理 / vue-observable-state-management
odanado
PRO
4
2k
nuxtjs-axios-error-handling
odanado
PRO
0
310
ブロックチェーンアプリのトランザクションに対するデータ分析 / PyCon-JP-2019
odanado
PRO
0
360
スマートコントラクトに対する既知の攻撃とその対策 / bc.tokyo-21
odanado
PRO
0
210
最近のweb3.js事情 / bc.tokyo-19
odanado
PRO
2
460
YAPC::Tokyo 2019に スタッフ参加してみて / kichijojipm-18
odanado
PRO
1
2.2k
Other Decks in Programming
See All in Programming
PHPとAPI Platformで作る本格的なWeb APIアプリケーション(入門編) / phpcon 2024 Intro to API Platform
ttskch
0
390
선언형 UI에서의 상태관리
l2hyunwoo
0
270
VisionProで部屋の明るさを反映させるシェーダーを作った話
segur
0
100
Beyond ORM
77web
11
1.6k
Azure AI Foundryのご紹介
qt_luigi
1
190
Package Traits
ikesyo
1
210
watsonx.ai Dojo #6 継続的なAIアプリ開発と展開
oniak3ibm
PRO
0
170
ecspresso, ecschedule, lambroll を PipeCDプラグインとして動かしてみた (プロトタイプ) / Running ecspresso, ecschedule, and lambroll as PipeCD Plugins (prototype)
tkikuc
2
1.8k
Stackless и stackful? Корутины и асинхронность в Go
lamodatech
0
1.3k
情報漏洩させないための設計
kubotak
5
1.3k
Внедряем бюджетирование, или Как сделать хорошо?
lamodatech
0
940
知られざるDMMデータエンジニアの生態 〜かつてツチノコと呼ばれし者〜
takaha4k
1
410
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Bash Introduction
62gerente
610
210k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
30
2.1k
Building Adaptive Systems
keathley
38
2.4k
Designing Experiences People Love
moore
139
23k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.5k
4 Signs Your Business is Dying
shpigford
182
22k
GitHub's CSS Performance
jonrohan
1030
460k
Become a Pro
speakerdeck
PRO
26
5.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
240
Transcript
PyCon JP 2018 LT 【poke2vec】ポケモンの役割ベクトルの 学習とその分析・可視化 1 @odan3240
自己紹介 • Twitter: @odan3240 • 新卒エンジニア • 五反田のIT企業に所属 • 大学では自然言語処理の研究
• 今はフロントエンドエンジニア • PyCon JP初参加!! • 登壇も初!! • 緊張してます 2
目次 • 分布仮説 • word2vec • ポケモンにおける役割 • ポケモンへの応用 •
実験結果の可視化 • まとめ 3
分布仮説 4
分布仮説 「彼女はxxxを食べる」 「包丁を使ってxxxを切った」 「xxxといちごをお見舞いに持っていく」 「xxxジャムを作る」 「xxxの絵を赤で描く」 5
分布仮説 「彼女はxxxを食べる」 「包丁を使ってxxxを切った」 「xxxといちごをお見舞いに持っていく」 「xxxジャムを作る」 「xxxの絵を赤で描く」 XXXは食べ物? 6
分布仮説 「彼女はxxxを食べる」 「包丁を使ってxxxを切った」 「xxxといちごをお見舞いに持っていく」 「xxxジャムを作る」 「xxxの絵を赤で描く」 XXXはそこまで固くない 7
分布仮説 「彼女はxxxを食べる」 「包丁を使ってxxxを切った」 「xxxといちごをお見舞いに持っていく」 「xxxジャムを作る」 「xxxの絵を赤で描く」 XXXはいちごの仲間? 8
分布仮説 「彼女はxxxを食べる」 「包丁を使ってxxxを切った」 「xxxといちごをお見舞いに持っていく」 「xxxジャムを作る」 「xxxの絵を赤で描く」 ジャムにできる :thiking_face: 9
分布仮説 「彼女はxxxを食べる」 「包丁を使ってxxxを切った」 「xxxといちごをお見舞いに持っていく」 「xxxジャムを作る」 「xxxの絵を赤で描く」 赤色として描かれる 10
分布仮説 「彼女はりんごを食べる」 「包丁を使ってりんごを切った」 「りんごといちごをお見舞いに持っていく」 「りんごジャムを作る」 「りんごの絵を赤で描く」 りんご! 11
分布仮説 「彼女はりんごを食べる」 「包丁を使ってりんごを切った」 「りんごといちごをお見舞いに持っていく」 「りんごジャムを作る」 「りんごの絵を赤で描く」 周辺の単語からその単語の意味が決まる仮説 12
word2vec 13
word2vec • word2vec => 単語をベクトル化する手法 • 周辺の単語を元に単語のベクトルを計算 • 単語ベクトルを使うことで 意味に基づく単語の計算が可能になる
14 王 女 男 女王
word2vec 単語ベクトルを2次元に プロットすると意味が近い単語が近くに集まる 15
ポケモンにおける役割 16
ポケモンにおける役割 • ポケモンのeスポーツ化 • 賞金がかかった世界大会が開催されている • ポケモン対戦にガチで取り組む人が一定数いる 17 出典 pokemon.co.jp
ポケモンにおける役割 ポケモンは6匹のパーティを組んで オンライン上で対戦する 18 出典 ポケモングローバルリンク
ポケモンにおける役割 • ポケモンの役割 ◦ e.g. 同じほのおタイプなので似た役割を持つ 19 出典 ポケモングローバルリンク
ポケモンにおける役割 • ポケモンの役割 ◦ e.g. ほのおタイプはくさタイプに強い 20 出典 ポケモングローバルリンク
ポケモンへの応用 21
モチベーション ポケモンの”役割”を自動計算したい これまではポケモンの 特徴から人間が意味付けていた 22
ポケモンの役割に関する仮説 似たようなパーティで使用される ポケモン同士は似た役割を持つのでは? 23 出典 ポケモングローバルリンク
ポケモンの役割に関する仮説 ある単語の意味は同じ文中で 同時に使用される単語によって決まる (分布仮説) あるポケモンの役割は同じパーティで 同時に使用されるポケモンによって決まる 24
実験 • データセット作り a. ネット上からポケモンの対戦データをクロール b. ポケモンの並びを無視してデータの重複を取り除く 約 5,000件 •
学習 ◦ ポケモンのパーティを文とみなしてword2vec (CBoW) を PythonのNeural Networkフレームワークのchainerで学習 • リポジトリ ◦ odanado/poke2vec 25
実験結果の可視化 26
デモサイト • https://bit.ly/poke2vec ◦ 役割ベクトルの加減算 ◦ 2次元可視化 ◦ 3次元可視化 27
役割ベクトルの加減算 28
可視化 29
可視化 30
まとめ • 分布仮説は周囲の単語の出現頻度から 単語の意味が決まる仮説 • 同時にパーティに採用されるポケモンの頻度から ポケモンの役割ベクトルを学習した • 今後 ◦
持ち物を考慮したベクトルを学習したい ▪ 現状だとデータ数が圧倒的に不足 ◦ パーティのうち5匹決まっている時に 残り1匹をレコメンドとかしたい 31
Appendix 32
Continuous Bag-of-Words Model 33
Continuous Bag-of-Words Model • 単語をベクトル化 (word2vec) する手法の1つ 34 りんご 彼女
は を 食べる 総和 ベクトル化 誤差計算
Continuous Bag-of-Words Model • 単語をベクトル化 (word2vec) する手法の1つ 35 りんご 彼女
は を 食べる 総和 ベクトル化 誤差計算