Upgrade to Pro — share decks privately, control downloads, hide ads and more …

oku-slide-stat1-5

 oku-slide-stat1-5

数理統計学特論I
第5回 統計的決定理論の枠組み
奥 牧人 (未病研究センター)
2022/05/18
2023/05/17
2024/05/15

Makito Oku

March 29, 2022
Tweet

More Decks by Makito Oku

Other Decks in Education

Transcript

  1. 今回の位置付け 1. 前置きと準備 2. 確率と1次元の確率変数 3. 多次元の確率変数 4. 統計量と標本分布 5.

    統計的決定理論の枠組み 6. ⼗分統計量 7. 推定論 8. 検定論 9. 区間推定 10. 正規分布、2項分布に関する推測 その他の話題 11. 線形モデル 12. ノンパラメトリック法 13. 漸近理論 14. ベイズ法 確率と統計の基礎 良い点推定とは︖ 良い検定とは︖ 問題設定と準備 7章と8章に関する証明 回帰分析と分散分析を統⼀的に理解 常⽤される⼿法を改めて整理 ベイズ統計を簡単に紹介 ノンパラを簡単に紹介 3 / 21
  2. 用語と定義 (前半) 標本空間: 標本 の実現値の属する集合 母数空間: 母数 の取り得る値の集合 分布族: 分布の集合

    統計家: 未知母数について推定や検定を行う者 決定空間: 統計家の決定 の取り得る値の集合 推定の場合、 は推定値を表し、 検定の場合、 は棄却または受容を表し、 X = (X1 , … , Xn ) X θ Θ {Pθ ∣ θ ∈ Θ} d D d D = Θ d D = {0, 1} 8 / 21
  3. 用語と定義 (後半) 損失関数: 母数 と決定 を変数とする非負の関数 推定の場合の例: 検定の場合の例: 決定が正しければ 、間違っていたら

    決定関数: 標本から決定への写像 リスク関数: 損失関数の期待値 θ d L(θ, d) ≥ 0 L(θ, d) = (θ − d) 2 0 1 d = δ(X) R(θ, δ) = E[L(θ, δ(X))] 9 / 21
  4. 許容性 2つの決定関数 があるとき、全ての について なら「 は より良いか同等」といい、 と書く。 少なくとも1つの で等号が外れていれば

    と書く。 ある決定関数 に対して、 となる が存在しなければ、 は 許容的 という。 許容的だからといって実用的とは限らない。 例) 平均の推定値として、標本によらず常に同じ値を出力する 決定関数も許容的である。 追加の制約条件を考える場合も多い。詳細は次回以降で扱う。 δ1 , δ2 θ R(θ, δ1 ) ≤ R(θ, δ2 ) δ1 δ2 δ1 ⪰ δ2 θ δ1 ≻ δ2 δ δ ∗ ≻ δ δ ∗ δ 11 / 21
  5. 具体例: 問題設定 表が出る確率が または のいずれかであることが分かって いるコインを1度だけ投げ、母数を推定する。 標本空間 (表が , 裏が

    ): 母数空間 ( とする): 決定空間: 損失関数: θ0 θ1 1 0 X = {0, 1} θ0 < θ1 Θ = {θ0 , θ1 } D = Θ L(θ, δ) = { 0, if θ = d 1, otherwise 15 / 21
  6. 具体例: 決定関数 可能な決定関数は4通り 1. によらず常に を予測 2. によらず常に を予測 3.

    が のとき , のとき を予測 4. が のとき , のとき を予測 式で書くと さらに、確率的にこれらを切り替える 確率化決定関数 も 使って良いとする。 X θ0 X θ1 X 1 θ1 0 θ0 X 1 θ0 0 θ1 δ1 (x) = θ0 , δ2 (x) = θ1 , δ3 (x) = θx , δ4 (x) = θ1−x 16 / 21
  7. 具体例: リスク関数 リスク関数 の値は次のようになる。 の場合 の場合 の場合 の場合 の場合 の場合

    を の リスク点 と呼ぶ。 R(θ, δ) θ = θ 0 θ = θ 1 δ = δ 1 0 1 δ = δ 2 1 0 δ = δ 3 θ 0 1 − θ 1 δ = δ 4 1 − θ 0 θ 1 R(δ) = (R(θ0 , δ), R(θ1 , δ)) δ 17 / 21