Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
oku-slide-stat1-5
Search
Makito Oku
March 29, 2022
Education
0
180
oku-slide-stat1-5
数理統計学特論I
第5回 統計的決定理論の枠組み
奥 牧人 (未病研究センター)
2022/05/18
2023/05/17
2024/05/15
Makito Oku
March 29, 2022
Tweet
Share
More Decks by Makito Oku
See All by Makito Oku
oku-slide-20240802
okumakito
0
73
oku-slide-20231129
okumakito
0
100
oku-slide-20230827
okumakito
0
110
oku-slide-20230213
okumakito
0
210
oku-slide-20221212
okumakito
0
79
oku-slide-20221129
okumakito
0
150
oku-slide-20221115
okumakito
0
290
oku-slide-20220820
okumakito
0
270
oku-slide-stat1-1
okumakito
0
270
Other Decks in Education
See All in Education
Canva
matleenalaakso
0
430
cbt2324
cbtlibrary
0
110
1106
cbtlibrary
0
420
Padlet opetuksessa
matleenalaakso
4
12k
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
800
Flinga
matleenalaakso
2
13k
Beispiel einer Fortbildung für "Soziales Lernen"
gsgoethe
0
120
(2024) Couper un gâteau... sans connaître le nombre de convives
mansuy
2
150
Introduction - Lecture 1 - Web Technologies (1019888BNR)
signer
PRO
0
4.9k
アニメに学ぶチームの多様性とコンピテンシー
terahide
0
240
小学生にスクラムを試してみた件~中学受検までの100週間の舞台裏~
ukky86
0
340
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
810
Featured
See All Featured
Scaling GitHub
holman
458
140k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Facilitating Awesome Meetings
lara
50
6.1k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
A Tale of Four Properties
chriscoyier
156
23k
Gamification - CAS2011
davidbonilla
80
5k
Navigating Team Friction
lara
183
14k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
How to Ace a Technical Interview
jacobian
276
23k
Teambox: Starting and Learning
jrom
133
8.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
97
Transcript
数理統計学特論I 第5回 統計的決定理論の枠組み 奥 牧人 (未病研究センター) 2024/05/15 1 / 21
前回の復習 前回の目的 主な統計量と標本分布の意味を数式で理解すること 前回の達成目標 標本平均と標本分散の式を書ける。 分布、 分布、 分布の意味を説明できる。 大数の法則と中心極限定理の式の意味を説明できる。 正規分布近似が使える条件を説明できる。
χ 2 t F 2 / 21
今回の位置付け 1. 前置きと準備 2. 確率と1次元の確率変数 3. 多次元の確率変数 4. 統計量と標本分布 5.
統計的決定理論の枠組み 6. ⼗分統計量 7. 推定論 8. 検定論 9. 区間推定 10. 正規分布、2項分布に関する推測 その他の話題 11. 線形モデル 12. ノンパラメトリック法 13. 漸近理論 14. ベイズ法 確率と統計の基礎 良い点推定とは︖ 良い検定とは︖ 問題設定と準備 7章と8章に関する証明 回帰分析と分散分析を統⼀的に理解 常⽤される⼿法を改めて整理 ベイズ統計を簡単に紹介 ノンパラを簡単に紹介 3 / 21
今回の目的と達成目標 目的 推定と検定を統一的に扱うための理論的枠組みを理解すること 達成目標 損失関数の意味を説明できる。 決定関数の意味を説明できる。 リスク関数の意味を説明できる。 ミニマックス基準の意味を説明できる。 4 /
21
予習用キーワードの確認 平均二乗誤差 ミニマックス法 5 / 21
Outline 1. 用語と定義 2. 許容性 3. ミニマックス基準とベイズ基準 6 / 21
Outline 1. 用語と定義 2. 許容性 3. ミニマックス基準とベイズ基準 7 / 21
用語と定義 (前半) 標本空間: 標本 の実現値の属する集合 母数空間: 母数 の取り得る値の集合 分布族: 分布の集合
統計家: 未知母数について推定や検定を行う者 決定空間: 統計家の決定 の取り得る値の集合 推定の場合、 は推定値を表し、 検定の場合、 は棄却または受容を表し、 X = (X1 , … , Xn ) X θ Θ {Pθ ∣ θ ∈ Θ} d D d D = Θ d D = {0, 1} 8 / 21
用語と定義 (後半) 損失関数: 母数 と決定 を変数とする非負の関数 推定の場合の例: 検定の場合の例: 決定が正しければ 、間違っていたら
決定関数: 標本から決定への写像 リスク関数: 損失関数の期待値 θ d L(θ, d) ≥ 0 L(θ, d) = (θ − d) 2 0 1 d = δ(X) R(θ, δ) = E[L(θ, δ(X))] 9 / 21
Outline 1. 用語と定義 2. 許容性 3. ミニマックス基準とベイズ基準 10 / 21
許容性 2つの決定関数 があるとき、全ての について なら「 は より良いか同等」といい、 と書く。 少なくとも1つの で等号が外れていれば
と書く。 ある決定関数 に対して、 となる が存在しなければ、 は 許容的 という。 許容的だからといって実用的とは限らない。 例) 平均の推定値として、標本によらず常に同じ値を出力する 決定関数も許容的である。 追加の制約条件を考える場合も多い。詳細は次回以降で扱う。 δ1 , δ2 θ R(θ, δ1 ) ≤ R(θ, δ2 ) δ1 δ2 δ1 ⪰ δ2 θ δ1 ≻ δ2 δ δ ∗ ≻ δ δ ∗ δ 11 / 21
Outline 1. 用語と定義 2. 許容性 3. ミニマックス基準とベイズ基準 12 / 21
ミニマックス決定関数 リスク関数の最大値 (最悪値) ミニマックス決定関数: リスク関数の最大値が最小の決定関数 ¯ R(δ) = sup θ
R(θ, δ) ¯ R(δ ∗ ) ≤ ¯ R(δ), ∀δ 13 / 21
ベイズ決定関数 ベイズリスク: 母数 の事前分布 で重み付けしたリスク関数の 平均 ベイズ決定関数: ベイズリスクが最小の決定関数 θ π
r(π, δ) = ∫ Θ R(θ, δ)π(dθ) r(π, δ ∗ ) ≤ r(π, δ), ∀δ 14 / 21
具体例: 問題設定 表が出る確率が または のいずれかであることが分かって いるコインを1度だけ投げ、母数を推定する。 標本空間 (表が , 裏が
): 母数空間 ( とする): 決定空間: 損失関数: θ0 θ1 1 0 X = {0, 1} θ0 < θ1 Θ = {θ0 , θ1 } D = Θ L(θ, δ) = { 0, if θ = d 1, otherwise 15 / 21
具体例: 決定関数 可能な決定関数は4通り 1. によらず常に を予測 2. によらず常に を予測 3.
が のとき , のとき を予測 4. が のとき , のとき を予測 式で書くと さらに、確率的にこれらを切り替える 確率化決定関数 も 使って良いとする。 X θ0 X θ1 X 1 θ1 0 θ0 X 1 θ0 0 θ1 δ1 (x) = θ0 , δ2 (x) = θ1 , δ3 (x) = θx , δ4 (x) = θ1−x 16 / 21
具体例: リスク関数 リスク関数 の値は次のようになる。 の場合 の場合 の場合 の場合 の場合 の場合
を の リスク点 と呼ぶ。 R(θ, δ) θ = θ 0 θ = θ 1 δ = δ 1 0 1 δ = δ 2 1 0 δ = δ 3 θ 0 1 − θ 1 δ = δ 4 1 − θ 0 θ 1 R(δ) = (R(θ0 , δ), R(θ1 , δ)) δ 17 / 21
具体例: ミニマックス決定関数 例えば、 の場合、可能な決定関数は下図の 四角形の範囲になる。 ミニマックス決定関数は、斜め45度の線が四角形と最初に当たる 点Pに相当 (確率 で を用い、確率
で を用いる) θ0 = 1/2, θ1 = 2/3 6/7 δ3 1/7 δ1 18 / 21
まとめ 推定と検定を統一的に扱うための理論的枠組みを説明しました。 1. 用語と定義 ! 損失関数の意味を説明できる? ! 決定関数の意味を説明できる? ! リスク関数の意味を説明できる?
2. 許容性 3. ミニマックス基準とベイズ基準 ! ミニマックス基準の意味を説明できる? 19 / 21
小テスト Moodleで小テストに回答して下さい。 期限は今週中 (日曜の23:59まで) とします。 繰り返し受験して構いません。最高得点で成績をつけます。 20 / 21
次回の予習用キーワード 十分統計量 21 / 21