Upgrade to Pro — share decks privately, control downloads, hide ads and more …

oku-slide-stat2-1

 oku-slide-stat2-1

数理統計学特論II
第1回 基本用語
奥 牧人 (未病研究センター)
2022/06/15
2023/06/14
2024/06/12
2025/06/18

Avatar for Makito Oku

Makito Oku

March 29, 2022
Tweet

More Decks by Makito Oku

Other Decks in Education

Transcript

  1. 「現代数理統計学」の全体像 1. 前置きと準備 2. 確率と1次元の確率変数 3. 多次元の確率変数 4. 統計量と標本分布 5.

    統計的決定理論の枠組み 6. ⼗分統計量 7. 推定論 8. 検定論 9. 区間推定 10. 正規分布、2項分布に関する推測 その他の話題 11. 線形モデル 12. ノンパラメトリック法 13. 漸近理論 14. ベイズ法※ 確率と統計の基礎 良い点推定とは︖ 良い検定とは︖ 問題設定と準備 7章と8章に関する証明 回帰分析と分散分析を統⼀的に理解 常⽤される⼿法を改めて整理 ベイズ統計を簡単に紹介 ノンパラを簡単に紹介 ※ 14章は授業では扱わない予定 3 / 52
  2. 授業計画 1. 基本用語 2. 検定論 3. 区間推定 4. 正規分布と二項分布に関する推測 5.

    線形モデル 6. ノンパラメトリック法 7. 漸近理論 8. 期末試験と解説 4 / 52
  3. 集合に関する記号 は、 が集合 の元であることを表す 和集合 ( または ) 積集合 (

    かつ ) 差集合 ( だが でない) 部分集合 ( は に含まれる) x ∈ A x A A B A ∪ B A B A ∩ B A B A ∖ B A B A ⊆ B 13 / 52
  4. よく使うギリシャ文字 記号 読み方 記号 読み方 記号 読み方 アルファ カッパ タウ

    ベータ , ラムダ , ファイ , ガンマ ミュー カイ , デルタ ニュー , プサイ イプシロン グザイ , オメガ ゼータ , パイ イータ ロー , シータ , シグマ α κ τ β λ Λ ϕ Φ γ Γ μ χ δ Δ ν ψ Ψ ε ξ ω Ω ζ π Π η ρ θ Θ σ Σ 16 / 52
  5. 総乗記号 全てを足す場合 (総和) 全てを掛ける場合 (総乗) 足し算は英語で summation で、s に対応するギリシア文字が 掛け算は英語で

    product で、p に対応するギリシア文字が n ∑ i=1 xi = x1 + ⋯ + xn n ∏ i=1 xi = x1 × ⋯ × xn Σ Π 18 / 52
  6. ド・モルガンの法則 「 または 」の否定は「 でない、かつ でない」 「 かつ 」の否定は「 でない、または

    でない」 「または」と「かつ」が入れ替わる ド・モルガンの法則として知られている P Q P Q P ∨ Q = P ∧ Q P Q P Q P ∧ Q = P ∨ Q 23 / 52
  7. 述語論理の場合 や も否定にすると入れ替わる 「全ての について が成り立つ」の否定は 「ある について が成り立たない」 「ある

    について が成り立つ」の否定は 「全ての について が成り立たない」 ∀ ∃ x P (x) x P (x) ∀x, P (x) = ∃x, P (x) x P (x) x P (x) ∃x, P (x) = ∀x, P (x) 24 / 52
  8. 微分の基本 のべき乗の微分 分母にくる場合も同様 を含まないものは微分したら消える x (x) ′ = 1 (x

    2 ) ′ = 2x (x 3 ) ′ = 3x 2 (x n ) ′ = nx n−1 ( 1 x ) ′ = (x −1 ) ′ = −x −2 x (c) ′ = 0 26 / 52
  9. 対数、指数、三角関数の微分 対数関数 指数関数 三角関数 (log x) ′ = 1 x

    (e x ) ′ = e x (sin x) ′ = cos x (cos x) ′ = − sin x 27 / 52
  10. 2つの関数の積の微分 2つの関数の積の微分は、片方ずつ微分すれば良い 割り算の場合も同様 (f(x)g(x)) ′ = f ′ (x)g(x) +

    f(x)g ′ (x) (x 2 log x) ′ = 2x log x + x 2 1 x ( f(x) g(x) ) ′ = (f(x) 1 g(x) ) ′ = f ′ (x) 1 g(x) + f(x) −g ′ (x) (g(x))2 = f ′ (x)g(x) − f(x)g ′ (x) (g(x)) 2 29 / 52
  11. 転置 転置 は、ベクトルや行列の縦と横を入れ替えること は英語の Transpose の頭文字 T = ( )

    ( ) T = ( ) T = ( ) ⎛ ⎝ 1 2 3 ⎞ ⎠ 1 2 3 1 2 3 ⎛ ⎝ 1 2 3 ⎞ ⎠ 1 2 3 4 1 3 2 4 T 32 / 52
  12. 固有値と固有ベクトル ある行列 が 固有値 と 固有ベクトル を持つとき、その行 列に固有ベクトルを掛けると、元のベクトルの固有値倍になる 例 固有値は

    でも良い A λ v Av = λv A = ( ), v = ( ), λ = 5 Av = ( ) ( ) = ( ) = 5 ( ) 1 2 2 4 1 2 1 2 2 4 1 2 5 10 1 2 0 ( ) ( ) = ( ) = 0 × ( ) 1 2 2 4 2 −1 0 0 2 −1 41 / 52
  13. 単射と全射 集合 から への写像 を考える 単射 は、行き先で合流しないこと 例、 は、 のとき

    になり、 のときも になるので、単射でない 全射 は、行き先の全ての要素に到達できること 例、同じく は、 が実数とすると、 にはどの からも到達できないので、全射でない 全単射 は、単射かつ全射のこと A B f : A → B y = f(x) = x 2 x = 1 y = 1 x = −1 y = 1 y = f(x) = x 2 x y = −1 x 47 / 52
  14. 期待値と分散の性質 常に成り立つ式 ( は定数) と が独立のときのみ成り立つ式 a, b V [X]

    = E[X 2 ] − E[X] 2 E[aX + b] = aE[X] + b V [aX + b] = a 2 V [X] E[X + Y ] = E[X] + E[Y ] X Y E[XY ] = E[X]E[Y ] V [X + Y ] = V [X] + V [Y ] 50 / 52