Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
儲かるPython
Search
OHNO
February 21, 2021
Programming
0
240
儲かるPython
OHNO
February 21, 2021
Tweet
Share
More Decks by OHNO
See All by OHNO
自社データを生成AIに活用
planeta
0
81
生成系AIで自データを扱うには
planeta
0
220
外観検査の難しさ
planeta
0
530
画像処理ライブラリOpenCVの使い方0910
planeta
0
1.5k
Pythonによる工業用カメラ画像取得事例
planeta
0
1.4k
画像処理ライブラリOpenCVの使い方
planeta
0
1k
SONYのNNC
planeta
0
610
機械学習による動作認識
planeta
0
780
画像類似度計算
planeta
0
2k
Other Decks in Programming
See All in Programming
ThorVG Viewer In VS Code
nors
0
760
CSC307 Lecture 07
javiergs
PRO
0
550
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.8k
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
690
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
230
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
180
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
120
Package Management Learnings from Homebrew
mikemcquaid
0
210
今から始めるClaude Code超入門
448jp
7
8.4k
Vibe codingでおすすめの言語と開発手法
uyuki234
0
220
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
Featured
See All Featured
Designing for Timeless Needs
cassininazir
0
130
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Thoughts on Productivity
jonyablonski
74
5k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Faster Mobile Websites
deanohume
310
31k
Become a Pro
speakerdeck
PRO
31
5.8k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
100
The Pragmatic Product Professional
lauravandoore
37
7.1k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
Crafting Experiences
bethany
1
46
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Transcript
儲かるPython ~時系列データの予測 と売り上げの予測~ 2021/2/20 Python機械学習勉強会 in 新潟 #12 大野 宏
概要 ・以前、時系列データの予測を使い、電力消費量の予測を 紹介した。 ・今回、加熱に要するエネルギー削減を目的に、ある装置 を加熱する時の温度を予測した。 ・製造業(食品製造業も対象)における売り上げを予測し、 生産計画の立案に役立てる。
時系列データの予測 ・ある装置の温度を予測し、加熱に使用するエネルギー使 用量を削減したい。 ・月曜日9時にある装置が所定の温度になるよう、前日に ヒータで加熱を始めているが、早めに所定の温度に達し、 エネルギーが無駄になっている。 ・1年分のデータを使い再帰型ニューラルネットワークで温 度を予測し、良い結果が得られた。実装はこれから。
売り上げを上げるために事前に予測 ・分類問題として考える 営業データから成約予測モデルを作り、成約ありかなし か予測する。成約が上がるよう、営業対象を絞り込む。 ・各種データから売り上げを予測(回帰) 自転車レンタル数を、天候、季節、温度、曜日などの条 件から予測する。 ・季節などの周期性から売り上げを予測(時系列分析) 過去の値を基に未来の値を予測する。 ・回帰+時系列分析でさらなる向上
予測モデル ・営業成約予測モデル ・予測モデル(回帰) ・過去の値を基に未来の値を予測(時系列分析) 季節 年 曜日 ・・ 天気 湿度
風速 モデル 自転車利用数 年齢 職業 ・・ 連絡回数 連絡日数 モデル 成約あり 制約なし 過去の自転車 利用数 モデル 未来の自転車 利用数
類似事例としてのAIタクシー ・過去のタクシーの昇降データ等を学習させ、顧客がいる エリアを予想する。 ・タクシー会社の昇降データ、携帯電話会社の人の分布 データ、曜日、時間、天候 多くのタクシーが一斉 に使ったらどうなる? 6
類似事例としての売り上げ予測 ・伊勢神宮前の「ゑびや」(食堂とお土産屋)がAIで売り上 げを予測 → 新会社を設立してツールを販売 通行人をカウントしながら年齢・性別の情報も収集 7
参考図書 Pythonで儲かるAIをつくる
回帰 ・レンタル自転車の利用数を予測する ・データはUCIのBike Sharing Dataset ・日付、季節、年、月、祝日、曜日、勤務日(月~金か土 日か)、天気、気温、体感温度、湿度、風速で予測 訓練データ 検証データ
回帰の結果 ・XGBoostRegressor での予測結果の決定係数R2は 0.4206 ・月と季節をOne-hotエンコーディング R2は 0.5099
・決定係数 R2 は、標本値を y 、推定値を f とすると次式で 表される。 ・y と
f が合うと1に、合わないと0になる 決定係数
重要度分析 ・XGBoostRegressor ではplot_importanceで重要度を分析
時系列分析 ・過去の利用数から未来の利用数をFB社Prophetで予測 ・天気、気温、風速、湿度も加味して改善 R2 0.4145 ↓ 0.6196
売り上げ予測のまとめ ・回帰より時系列分析の方が良い結果が得られた ・時系列分析に回帰を加えた方が良い結果が得られた ・時系列分析は、1週間後や1か月後の売り上げも予測 可能