Upgrade to Pro — share decks privately, control downloads, hide ads and more …

画像処理ライブラリOpenCVの使い方0910

Sponsored · Ship Features Fearlessly Turn features on and off without deploys. Used by thousands of Ruby developers.
Avatar for OHNO OHNO
September 10, 2020

 画像処理ライブラリOpenCVの使い方0910

Avatar for OHNO

OHNO

September 10, 2020
Tweet

More Decks by OHNO

Other Decks in Programming

Transcript

  1. 画像の読み込みと表示 #カラー img1=cv2.imread("lena.jpg",1) cv2.imshow ( "img1", img1 ) cv2.waitKey(1000) #1秒間待機

    #白黒 img1=cv2.imread("lena.jpg",0) cv2.imshow ( "img2", img2 ) cv2.imwrite(“img.png” , img2) #画像の保存 cv2.waitKey(0) #Enterキーで終了 Test0.py
  2. 画像の反転、回転1 img1=cv2.imread("building.jpg",1) img2=cv2.flip(img1,0) #上下反転 0 cv2.imshow ( "img2", img2 )

    cv2.waitKey(1000) img2=cv2.flip(img1,1) #左右反転 >0 img2=cv2.flip(img1,-1) #左右反転 <0 img2=cv2.rotate(img1, cv2.ROTATE_90_CLOCKWISE) img2=cv2.rotate(img1, cv2.ROTATE_180) img2=cv2.rotate(img1,cv2.ROTATE_90_COUNTERCLOCKWISE) Test4.py
  3. 画像の回転2 img1=cv2.imread("building.jpg",1) height = img1.shape[0] width = img1.shape[1] center =

    (int(width/2), int(height/2)) angle = 45.0 scale = 1.0 trans = cv2.getRotationMatrix2D(center, angle , scale) img2 = cv2.warpAffine(img1, trans, (width,height)) cv2.imshow ( "img2", img2 ) cv2.waitKey(1000) Test5.py
  4. 四角形、線、円の描画 img1=cv2.imread("building.jpg",1) cv2.rectangle(img1, (200, 200), (500, 500), (255, 0, 0),

    thickness=2, lineType=cv2.LINE_4) cv2.line(img1, (100, 100), (600, 100), (0, 255, 0), thickness=2, lineType=cv2.LINE_4) cv2.circle(img1, (440,400), 100, (0,0,255), thickness=2, lineType=cv2.LINE_4, shift=0) cv2.imshow ( "img", img1 ) cv2.waitKey(1000) Test7.py
  5. フィルタ処理 -1 0 1 -2 0 2 -1 0 1

    一定の大きさのカーネル(オペレータ)で積和演算(畳み 込み計算)を行う。全画素に対してこの計算を実施。
  6. フィルタ処理(Sobel) img1=cv2.imread("building.jpg",0) img2=cv2.Sobel(img1,cv2.CV_32F,0,1) img2=cv2.convertScaleAbs(img2) cv2.imshow ( "img1", img1 ) cv2.imshow

    ( "img2", img2 ) cv2.waitKey(1000) img1=cv2.imread("building1.png",0) img3=img2|img3 cv2.imshow ( "img3", img3 ) cv2.waitKey(1000) 縦方向の変化を強調 -1 -2 -1 0 0 0 1 2 1 Test11.py
  7. ラベルの色付け colors=[] colors.append([0,0,0]) colors.append([255,0,0]) colors.append([0,255,0]) colors.append([0,0,255]) colors.append([0,255,255]) for y in

    range(0,height): for x in range(0,width): if 0<label[y,x]: img1[y,x]=colors[label[y,x]] else: img1[y,x]=[0,0,0] cv2.imshow ( "img1", img1 ) cv2.waitKey(0) Test13.py 数字の場合 OpenCVで1文字ずつ切り出 しディープラーニングで認識
  8. 2値化 img1=cv2.imread("kizu.png",0) cv2.imshow ( "img1", img1 ) #2値化 ret,img2=cv2.threshold(img1,120,255,1) cv2.imshow

    ( "img2", img2 ) cv2.waitKey(1000) ・2値化の閾値を変えてみよう Test14.py
  9. 地の明るさ img1=cv2.imread("kizu.png",0) img2=np.zeros([256,400]).astype('uint8') for x in range(0,400): dat=0 for y

    in range(80,90): dat=dat+img1[y,x] dat=int(0.1*dat) cv2.line(img2,(x,0),(x,dat),(255,25,255)) cv2.imshow ( "img1", img1 ) cv2.imshow ( "img2", img2 ) cv2.waitKey(0) Test15.py 地の明るさが不均一
  10. 動的2値化処理 地の明るさを均一に img1=cv2.imread("kizu.png",0) #平均値フィルタ img2=cv2.blur(img1,(32,32)) img3=img1-img2+127 cv2.imshow ( "img1", img1

    ) cv2.imshow ( "img2", img2 ) cv2.imshow ( "img3", img3 ) cv2.imwrite ( “kizu1.png", img3 ) cv2.waitKey(0) Test16.py
  11. 地の明るさ(改良後) img1=cv2.imread("kizu1.png",0) img2=np.zeros([256,400]).astype('uint8') for x in range(0,400): dat=0 for y

    in range(80,90): dat=dat+img1[y,x] dat=int(0.1*dat) cv2.line(img2,(x,0),(x,dat),(255,25,255)) cv2.imshow ( "img2", img2 ) cv2.waitKey(0) 地の明るさが均一に Test17.py
  12. 動的2値化で不良検出 2/2 n = label[0] - 1 data = np.delete(label[2],

    0, 0) center=np.delete(label[3], 0, 0) for i in range(n): if(data[i][4]>30): str1=“n:”+str(data[i][4])+“ x:”+str(int(center[i][0]))+“ y:"+str(int(center[i][1])) print(str1) x0 = data[i][0]-2 y0 = data[i][1]-2 x1 = data[i][0] + data[i][2]+2 y1 = data[i][1] + data[i][3]+2 cv2.rectangle(color, (x0, y0), (x1, y1), (0, 0, 255)) cv2.imshow ( "color", color )
  13. Pythonプログラム1/3 from pypylon import pylon from pypylon import genicam import

    sys import cv2 import numpy as np width = 2044 height = 1536 img1 = np.zeros((height, width, 1), np.uint8) countOfImagesToGrab = 10 exitCode = 0 try: camera =pylon.InstantCamera(pylon.TlFactory.GetInstance().CreateFirstDevice()) camera.Open() print("Using device ", camera.GetDeviceInfo().GetModelName()) new_width = camera.Width.GetValue() - camera.Width.GetInc()
  14. Pythonプログラム2/3 if new_width >= camera.Width.GetMin(): camera.Width.SetValue(new_width) camera.MaxNumBuffer = 5 while

    True: camera.StartGrabbingMax(1) while camera.IsGrabbing(): grabResult = camera.RetrieveResult(5000, pylon.TimeoutHandling_ThrowException) if grabResult.GrabSucceeded(): img = grabResult.Array cv2.imshow("img",img) key=cv2.waitKey(1) else: print("Error: ", grabResult.ErrorCode, grabResult.ErrorDescription) if key=='q’: break grabResult.Release()
  15. Pythonプログラム3/3 camera.Close() except genicam.GenericException as e: # Error handling. print("An

    exception occurred.") print(e.GetDescription()) exitCode = 1 sys.exit(exitCode)