Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Kit を Android で 動かしてみた
Search
radiocat
June 14, 2018
Technology
0
910
ML Kit を Android で 動かしてみた
radiocat
June 14, 2018
Tweet
Share
More Decks by radiocat
See All by radiocat
EMの仕事、あるいは顧客価値創出のアーキテクト
radiocat
0
300
アジャイルを支える心理的安全性の守破離 / Psychological safety for Agile
radiocat
1
840
経験ゼロからはじめる!10年以上続くプロダクトのアウトカム創出戦略 / Challenges of product management
radiocat
1
4.7k
変化の時代に活かす「みんなのプロジェクトマネジメント」 / Utilize project management for change
radiocat
0
1.9k
「中小企業のエンジニアチームを”楽”にする」を目指す組織マネジメントの変わる勇気と変えない勇気 / Challenge to Scrum 4
radiocat
2
3.9k
関西的なノリで変化の波をノリこなすチームの取り組み / 3 Steps and Kansai-soul to Riding the Waves of Change
radiocat
2
3.5k
スクラムちゃうがなと言われてもやってみぃひん? / Challenge to Scrum 3
radiocat
4
10k
Re:ゼロから始めるアジャイル開発 / restart agile
radiocat
3
1.7k
スクラム開発について / What is Scrum?
radiocat
0
560
Other Decks in Technology
See All in Technology
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
210
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
480
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.6k
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
680
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
330
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2k
Cosmos World Foundation Model Platform for Physical AI
takmin
0
960
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
220
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.6k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
2
3.1k
AWS Network Firewall Proxyを触ってみた
nagisa53
1
240
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Practical Orchestrator
shlominoach
191
11k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
63
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Testing 201, or: Great Expectations
jmmastey
46
8.1k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Bash Introduction
62gerente
615
210k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
The SEO identity crisis: Don't let AI make you average
varn
0
330
How to make the Groovebox
asonas
2
1.9k
Transcript
ML Kit を Android で 動かしてみた 2018.6.14 / @radiocatz Osaka
Mix Leap Study #16 - Android JetPack 勉強会 - LT
おしごと 現職:株式会社 ラクス 所属:楽楽精算 開発チーム リーダー/スクラムマスター About me radiocat Twitter
: @radiocatz Android派/Vim派/野球派/KIRINビー ル派 HTC DesireからAndroidユーザー Blog : http://radiocat.hatenablog.com/ Qiita : https://qiita.com/radiocat GitHub : https://github.com/radiocat Androidアプリ 社内の勉強会の運営もやってます 共同開催・ゲスト登壇募集中!
ML Kitについて
ML Kit for Firebase • Android/iOS向け機械学習SDK • Google I/O 2018で発表
• 現在パブリックベータ • Googleに訓練されたMLモデルを利用可能 • TensorFlow Liteの自作モデル(Custom Models)も利用可能 • 2種類のAPI ◦ On-device:デバイスに組み込んで通信なしで使える軽量なモデル ◦ In the Cloud:クラウド上の高度なモデル
MLモデルAPIについて
None
On-device/Cloud
On-deviceで使えるAPI 無料で使える • 顔検出 • バーコードスキャン • 自作モデル • テキスト認識(※In
the Cloudでも使える) ◦ Latin-based languageのみ • 画像のラベル付け(※In the Cloudでも使える) ◦ 400+ labels
In the Cloudで使えるAPI Cloud Vision APIを使う Firebase の課金プランを Blaze(従量制課金)にする必要がある •
ランドマーク認識 • テキスト認識(※On-deviceでも使える) ◦ 多言語対応(日本語を使いたいならこちら) • 画像のラベル付け(※On-deviceでも使える) ◦ 1000+ labels ※On-device/In the Cloudの両方で使う場合はそれぞれ実装する
使い方
build.gradleへ追加 ML Kitの依存ライブラリ Google Services implementation 'com.google.firebase:firebase-ml-vision:16.0.0' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:15.0.0' implementation
'com.google.firebase:firebase-ml-model-interpreter:16.0.0' apply plugin: 'com.google.gms.google-services'
画像のラベル付けの場合① FirebaseVisionImageオブジェクトを作る FirebaseVisionLabelDetectorのインスタンスを取得する FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap); FirebaseVisionLabelDetector detector =
FirebaseVision.getInstance() .getVisionLabelDetector();
画像のラベル付けの場合② Task<List<FirebaseVisionLabel>> result = detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionLabel>>() { @Override
public void onSuccess(List<FirebaseVisionLabel> labels) { // 取得成功した場合の処理 } }) .addOnFailureListener( // 以下略
画像のラベル付けの場合③ ラベル付きオブジェクトの情報を取得 for (FirebaseVisionLabel label: labels) { String text =
label.getLabel(); String entityId = label.getEntityId(); float confidence = label.getConfidence(); }
それぞれのAPI向けのDetectorが用意されている 扱い方はだいたい同じ 参考:ML Kit for Firebase | Firebase https://firebase.google.com/docs/ml-kit/ On-device
Cloud FirebaseVisionTextDetector FirebaseVisionCloudDocumentTextDetector FirebaseVisionFaceDetector ー FirebaseVisionBarcodeDetector ー FirebaseVisionLabelDetector FirebaseVisionCloudLabelDetector ー FirebaseVisionCloudLandmarkDetector
試してみる
手っ取り早く公式のサンプルアプリをビルド 1. Firebaseプロジェクトを作成しgoogle-services.jsonをダウンロード 2. https://github.com/firebase/quickstart-android を git clone 3. quickstart-android/mlkitをAndroid
Studioでインポート 4. google-services.jsonをmlkit/appの下に配置してビルド
Demo
所感 • 仕組み的にはVision APIとTensorFlow Liteモデルなどの既存機能をSDKにパッケー ジングして使いやすくした感じ • と言うとたいしたことなく聞こえるけどリアルタイムでMLの予測が動くのはすごい • これがSDKを使うだけで誰でも作れそうなことに恐怖すら感じた
• しかもOn-deviceだけ使うなら無料!
Thank you
References • Google Developers Blog: Introducing ML Kit ◦ https://developers.googleblog.com/2018/05/introducing-ml-kit.html
• Y.A.M の 雑記帳: I/O Recap : ML Kit 情報まとめ(Android 向け) ◦ https://y-anz-m.blogspot.jp/2018/05/io-recap-ml-kit-android.html • Google OS実験室 ~Moonlight 明日香~ : Google ML Kit試してみた! ◦ http://google-os.blog.jp/archives/50874071.html