Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Kit を Android で 動かしてみた
Search
radiocat
June 14, 2018
Technology
0
860
ML Kit を Android で 動かしてみた
radiocat
June 14, 2018
Tweet
Share
More Decks by radiocat
See All by radiocat
アジャイルを支える心理的安全性の守破離 / Psychological safety for Agile
radiocat
1
680
経験ゼロからはじめる!10年以上続くプロダクトのアウトカム創出戦略 / Challenges of product management
radiocat
1
4.2k
変化の時代に活かす「みんなのプロジェクトマネジメント」 / Utilize project management for change
radiocat
0
1.6k
「中小企業のエンジニアチームを”楽”にする」を目指す組織マネジメントの変わる勇気と変えない勇気 / Challenge to Scrum 4
radiocat
2
3.2k
関西的なノリで変化の波をノリこなすチームの取り組み / 3 Steps and Kansai-soul to Riding the Waves of Change
radiocat
2
2.8k
スクラムちゃうがなと言われてもやってみぃひん? / Challenge to Scrum 3
radiocat
4
8.8k
Re:ゼロから始めるアジャイル開発 / restart agile
radiocat
3
1.6k
スクラム開発について / What is Scrum?
radiocat
0
470
アウトプット駆動読書術実践入門 / The Output-driven Reading Techniques 2
radiocat
2
830
Other Decks in Technology
See All in Technology
1行のコードから社会課題の解決へ: EMの探究、事業・技術・組織を紡ぐ実践知 / EM Conf 2025
9ma3r
10
3.7k
役員・マネージャー・著者・エンジニアそれぞれの立場から見たAWS認定資格
nrinetcom
PRO
3
5.8k
Amazon Q Developerの無料利用枠を使い倒してHello worldを表示させよう!
nrinetcom
PRO
2
110
遷移の高速化 ヤフートップの試行錯誤
narirou
6
1.1k
OCI Success Journey OCIの何が評価されてる?疑問に答える事例セミナー(2025年2月実施)
oracle4engineer
PRO
2
130
内製化を加速させるlaC活用術
nrinetcom
PRO
2
140
偏光画像処理ライブラリを作った話
elerac
1
170
いまからでも遅くない!コンテナでWebアプリを動かしてみよう!コンテナハンズオン編
nomu
0
150
OPENLOGI Company Profile
hr01
0
60k
短縮URLをお手軽に導入しよう
nakasho
0
140
Apache Iceberg Case Study in LY Corporation
lycorptech_jp
PRO
0
300
CDKでカスタムランタイムを作成して、Lambdaをnode.js23+TypeScriptで動かしてみた
smt7174
2
110
Featured
See All Featured
Gamification - CAS2011
davidbonilla
80
5.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
The Invisible Side of Design
smashingmag
299
50k
It's Worth the Effort
3n
184
28k
Unsuck your backbone
ammeep
669
57k
Automating Front-end Workflow
addyosmani
1368
200k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
The Pragmatic Product Professional
lauravandoore
32
6.4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
Docker and Python
trallard
44
3.3k
Transcript
ML Kit を Android で 動かしてみた 2018.6.14 / @radiocatz Osaka
Mix Leap Study #16 - Android JetPack 勉強会 - LT
おしごと 現職:株式会社 ラクス 所属:楽楽精算 開発チーム リーダー/スクラムマスター About me radiocat Twitter
: @radiocatz Android派/Vim派/野球派/KIRINビー ル派 HTC DesireからAndroidユーザー Blog : http://radiocat.hatenablog.com/ Qiita : https://qiita.com/radiocat GitHub : https://github.com/radiocat Androidアプリ 社内の勉強会の運営もやってます 共同開催・ゲスト登壇募集中!
ML Kitについて
ML Kit for Firebase • Android/iOS向け機械学習SDK • Google I/O 2018で発表
• 現在パブリックベータ • Googleに訓練されたMLモデルを利用可能 • TensorFlow Liteの自作モデル(Custom Models)も利用可能 • 2種類のAPI ◦ On-device:デバイスに組み込んで通信なしで使える軽量なモデル ◦ In the Cloud:クラウド上の高度なモデル
MLモデルAPIについて
None
On-device/Cloud
On-deviceで使えるAPI 無料で使える • 顔検出 • バーコードスキャン • 自作モデル • テキスト認識(※In
the Cloudでも使える) ◦ Latin-based languageのみ • 画像のラベル付け(※In the Cloudでも使える) ◦ 400+ labels
In the Cloudで使えるAPI Cloud Vision APIを使う Firebase の課金プランを Blaze(従量制課金)にする必要がある •
ランドマーク認識 • テキスト認識(※On-deviceでも使える) ◦ 多言語対応(日本語を使いたいならこちら) • 画像のラベル付け(※On-deviceでも使える) ◦ 1000+ labels ※On-device/In the Cloudの両方で使う場合はそれぞれ実装する
使い方
build.gradleへ追加 ML Kitの依存ライブラリ Google Services implementation 'com.google.firebase:firebase-ml-vision:16.0.0' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:15.0.0' implementation
'com.google.firebase:firebase-ml-model-interpreter:16.0.0' apply plugin: 'com.google.gms.google-services'
画像のラベル付けの場合① FirebaseVisionImageオブジェクトを作る FirebaseVisionLabelDetectorのインスタンスを取得する FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap); FirebaseVisionLabelDetector detector =
FirebaseVision.getInstance() .getVisionLabelDetector();
画像のラベル付けの場合② Task<List<FirebaseVisionLabel>> result = detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionLabel>>() { @Override
public void onSuccess(List<FirebaseVisionLabel> labels) { // 取得成功した場合の処理 } }) .addOnFailureListener( // 以下略
画像のラベル付けの場合③ ラベル付きオブジェクトの情報を取得 for (FirebaseVisionLabel label: labels) { String text =
label.getLabel(); String entityId = label.getEntityId(); float confidence = label.getConfidence(); }
それぞれのAPI向けのDetectorが用意されている 扱い方はだいたい同じ 参考:ML Kit for Firebase | Firebase https://firebase.google.com/docs/ml-kit/ On-device
Cloud FirebaseVisionTextDetector FirebaseVisionCloudDocumentTextDetector FirebaseVisionFaceDetector ー FirebaseVisionBarcodeDetector ー FirebaseVisionLabelDetector FirebaseVisionCloudLabelDetector ー FirebaseVisionCloudLandmarkDetector
試してみる
手っ取り早く公式のサンプルアプリをビルド 1. Firebaseプロジェクトを作成しgoogle-services.jsonをダウンロード 2. https://github.com/firebase/quickstart-android を git clone 3. quickstart-android/mlkitをAndroid
Studioでインポート 4. google-services.jsonをmlkit/appの下に配置してビルド
Demo
所感 • 仕組み的にはVision APIとTensorFlow Liteモデルなどの既存機能をSDKにパッケー ジングして使いやすくした感じ • と言うとたいしたことなく聞こえるけどリアルタイムでMLの予測が動くのはすごい • これがSDKを使うだけで誰でも作れそうなことに恐怖すら感じた
• しかもOn-deviceだけ使うなら無料!
Thank you
References • Google Developers Blog: Introducing ML Kit ◦ https://developers.googleblog.com/2018/05/introducing-ml-kit.html
• Y.A.M の 雑記帳: I/O Recap : ML Kit 情報まとめ(Android 向け) ◦ https://y-anz-m.blogspot.jp/2018/05/io-recap-ml-kit-android.html • Google OS実験室 ~Moonlight 明日香~ : Google ML Kit試してみた! ◦ http://google-os.blog.jp/archives/50874071.html