Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
制約理論(ToC)入門
Search
Recruit
PRO
August 09, 2024
Technology
7
1.7k
制約理論(ToC)入門
2024年度リクルート エンジニアコース新人研修の講義資料です
Recruit
PRO
August 09, 2024
Tweet
Share
More Decks by Recruit
See All by Recruit
分散型と集中型で切り開くクラウドコスト最適化: リクルート横断プロダクトCroisのFinOps実践
recruitengineers
PRO
2
74
毎晩の 負荷試験自動実行による効果
recruitengineers
PRO
5
240
Transformerを用いたアイテム間の 相互影響を考慮したレコメンドリスト生成
recruitengineers
PRO
2
720
Javaで作る RAGを活用した Q&Aアプリケーション
recruitengineers
PRO
1
170
問題解決に役立つ数理工学
recruitengineers
PRO
13
2.8k
Curiosity & Persistence
recruitengineers
PRO
2
210
結果的にこうなった。から見える メカニズムのようなもの。
recruitengineers
PRO
1
460
成長実感と伸び悩みからふりかえる キャリアグラフ
recruitengineers
PRO
1
220
リクルートの オンプレ環境の未来を語る
recruitengineers
PRO
3
410
Other Decks in Technology
See All in Technology
データエンジニアがクラシルでやりたいことの現在地
gappy50
3
660
AIエージェントを支える設計
tkikuchi1002
11
2.3k
AI工学特論: MLOps・継続的評価
asei
10
2k
ecspressoの設計思想に至る道 / sekkeinight2025
fujiwara3
12
2.1k
経理出身PdMがAIプロダクト開発を_ハンズオンで学んだ話.pdf
shunsukenarita
1
230
私とAWSとの関わりの歩み~意志あるところに道は開けるかも?~
nagisa53
1
130
【CEDEC2025】LLMを活用したゲーム開発支援と、生成AIの利活用を進める組織的な取り組み
cygames
PRO
1
1.6k
The Madness of Multiple Gemini CLIs Developing Simultaneously with Jujutsu
gunta
1
2.8k
生成AIによる情報システムへのインパクト
taka_aki
1
200
大規模イベントを支える ABEMA の アーキテクチャ 変遷 2025
nagapad
5
510
会社もクラウドも違うけど 通じたコスト削減テクニック/Cost optimization strategies effective regardless of company or cloud provider
aeonpeople
2
370
地域コミュニティへの「感謝」と「恩返し」 / 20250726jawsug-tochigi
kasacchiful
0
100
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Building Adaptive Systems
keathley
43
2.7k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
Fireside Chat
paigeccino
37
3.5k
What's in a price? How to price your products and services
michaelherold
246
12k
Designing for humans not robots
tammielis
253
25k
A better future with KSS
kneath
238
17k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Transcript
্ౡݡ࢜ʢ4BUPTIJ6&+*."ʣ ੍ཧʢ5P$ʣೖ
גࣜձࣾϦΫϧʔτ ൢଅྖҬϓϩμΫτσΟϕϩοϓϝϯτ1Ϣχοτʢॅ·͍ʣ Vice President ্ౡ ݡ࢜ʢSatoshi UEJIMAʣ ▪ܦྺ 2007ɿେखSIer ɹ৽ଔೖࣾ
2013ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζɹೖࣾ 2015ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζ ΤϯδχΞϦϯάGɹάϧʔϓϚωʔδϟʔ 2016ɿಉ্ɹ݉ɹגࣜձࣾϦΫϧʔτϚʔέςΟϯάύʔτφʔζ 2017ɿಉ্ɹ݉ɹגࣜձࣾϦΫϧʔτॅ·͍Χϯύχʔ 2019ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζ ϥΠϑΠϕϯτྖҬΤϯδχΞϦϯά෦ɹ෦ ɹɹɹɹɹ݉ɹגࣜձࣾϦΫϧʔτॅ·͍Χϯύχʔ 2020ɿגࣜձࣾϦΫϧʔτ ॅ·͍ྖҬΤϯδχΞϦϯά෦ɹ෦ ɹɹɹɹɹ݉ɹॅ·͍ྖҬ։ൃσΟϨΫγϣϯ෦ 2022ɿגࣜձࣾϦΫϧʔτ ൢଅྖҬʢॅ·͍ɾM&FɾࣗಈंɾཱྀߦʣΤϯδχΞϦϯά෦ɹ෦ ɹ݉ɹॅ·͍ྖҬ։ൃσΟϨΫγϣϯ෦ 2023ɿגࣜձࣾϦΫϧʔτ ॅ·͍ྖҬ։ൃσΟϨΫγϣϯ෦ɹ෦ ɹ݉ɹࣄۀ։ൃྖҬ։ൃσΟϨΫγϣϯ෦ ɹɹɹɹ ݉ɹ৽نࣄۀ։ൃࣨ 2024ɿגࣜձࣾϦΫϧʔτ ൢଅྖҬϓϩμΫτσΟϕϩοϓϝϯτ1Uʢॅ·͍ʣVP
"HFOEB 1. ੍ཧʢTOCʣͱ 2. اۀͷΰʔϧʢඪʣͱ 3. ੍ʢϘτϧωοΫʣͱεϧʔϓοτ 4. όοναΠζͱϦʔυλΠϜ 5.
ιϑτΣΞ։ൃݱͰͷ 6. ·ͱΊ
50$ʢ5IFPSZPG$POTUSBJOUTɿ੍ཧʣͱ ΠεϥΤϧͷཧֶऀΤϦϠϑɾΰʔϧυϥοτത࢜ʹΑͬͯఏএ͞Εͨ ੜ࢈ཧܦӦͷશମ࠷దԽͷվળख๏ “ͲΜͳγεςϜͰ͋Εɺৗʹ͘͝গͷཁૉ/ҼࢠʹΑͬͯɺ ͦͷతୡʹ͚ͨύϑΥʔϚϯε੍͕ݶ͞Ε͍ͯΔ” “੍ʹϑΥʔΧεͯ͠ղܾΛߦ͑ɺখ͞ͳมԽͱ খ͞ͳྗͰ࣌ؒͷ͏ͪʹஶ͍͠Ռ͕ಘΒΕΔ” ※ຊݚमͰΰʔϧυϥοτത࢜ͷஶॻʮβɾΰʔϧʯͷΤοηϯεͷհͱɺ ιϑτΣΞ։ൃͷݱʹ͓͚ΔྫΛަ͑ͨઆ໌Λ͍͖ͯ͠·͢ɻ
اۀͷΰʔϧʢඪʣͱ ʰ͓ۚΛṶ͚ଓ͚Δ͜ͱʱ
اۀͷΰʔϧʢඪʣͱ ʰ͓ۚΛṶ͚ଓ͚Δ͜ͱʱ ܦӦͷࢦඪ • ७རӹ • ࢿճऩ • Ωϟογϡϑϩʔ ݱͷࢦඪ
ʁʁʁ
اۀͷΰʔϧʢඪʣͱ ܦӦͷࢦඪ • ७རӹ • ࢿճऩ • Ωϟογϡϑϩʔ ݱͷࢦඪ •εϧʔϓοτɿൢചʢNot
ੜ࢈ʣΛ௨͓ͯۚ͡Λ࡞Γग़ׂ͢߹ •ࡏݿɿൢച͠Α͏ͱ͢ΔΛߪೖ͢ΔͨΊʹࢿͨ͠શͯͷ͓ۚ •ۀඅ༻ɿࡏݿΛεϧʔϓοτʹม͑ΔͨΊʹඅ͓ۚ͢ ʰ͓ۚΛṶ͚ଓ͚Δ͜ͱʱ
੍ʢϘτϧωοΫʣͱεϧʔϓοτ • ϋΠΩϯά • ͱ͋Δ • ܧଓվળʹ͚ͨ5εςοϓ
ϋΠΩϯάʢୂྻΛΈతΛࢦ͢ʣ
ྻͷ͕͞ͲΜͲΜ͘ͳΔ ͠Β͘͢Δͱʜ
ґଘతࣄʢͭͳ͕Γʣ 8km/࣌ͷೳྗ 3km/࣌ͷೳྗ ͨͱ͑8km/࣌Ͱา͚ͨͱͯ͠ɺ લͷΧΤϧ͕3km/͔࣌͠า͚ͳ͚Ε 1࣌ؒʹ3km͔͠ਐΉ͜ͱ͕Ͱ͖ͳ͍ ʢ͘ਐΉʹ੍ݶ͕͋Δʣ ౷ܭతมಈʢΒ͖ͭʣ ฏۉ3km/࣌ ۺඥΛͨ͠Γɺ͵͔ΔΈΛආ͚ͨΓͰ
2km/࣌ͰਐΉ͜ͱ͋Εɺલͱͷڑ ΛॖΊΔͨΊʹ4km/࣌ͰਐΉ͜ͱ͋Δ ʢਐΉ͞ʹόϥ͖͕ͭ͋Δʣ ౷ܭతมಈͱґଘతࣄ
౷ܭతมಈͱґଘతࣄ ͘า͘ ʢ= มಈʣ ۺඥ݁ͿͨΊʹ ࢭ·Δ ʢ= มಈʣ ࢭ·Δ ͘า͘
͘า͘ า͘ ʢ3km/࣌ʣ ґଘ ґଘ ґଘ ͘ਐΉʹ੍ݶ͕͋Δ͕ɺ͘ਐΉʹ੍ݶ͕ແ͍ͨΊɺୂྻແ੍ݶʹ͘ͳ͍ͬͯ͘ɻ Ұ͘ͳͬͯ͠·ͬͨୂྻΛݩͷ͞ʹͨ͢ΊʹɺޙΖΛา͘શͯͷΧΤϧ͕ ࣗͷલʹִ͕ͬͨؒͷ߹ܭʢมಈͷੵʣΛઌ಄ͷΧΤϧͷฏۉΑΓ͘า͘ඞཁ͕͋Δɻ มಈʹΑΓִ͕ͬͨؒ
ྻͷ͕͞ͲΜͲΜ͘ͳΔ ͠Β͘͢Δͱʜʢ࠶ܝʣ ʢগ͠ϦΧόϦʣ ʢલ͕͍ͷͰ ͍ൈ͔ͨ͠ʣ ※า͘ͷ͕ Ұ൪͍
ʲࡐྉͷೖʳ ʲͷൢചʳ εϧʔϓοτʢ ↘︎ ʣ ྻͷ͞ = ࡏݿʢ ↗︎ ʣ
า͘ͷʹඞཁͳΤωϧΪʔ = ۀඅ༻ʢ ↗︎ ʣ ͜ͷୂྻΛʮา͍ͨಓʯͱ͍͏Λ࡞͍ͬͯΔͱΈͳ͢ͱɺઌ಄͕ະ౿ͷಓΛา͘ = ੜ࢈Λ։࢝ɺ ࠷ޙඌ͕า͍ͯ͡Ί͕ͯൢച͞ΕΔ͜ͱʹͳΔɻΑͬͯɺ࠷ޙඌͷา͘εϐʔυ = εϧʔϓοτɻ ઌ಄͕า͖࢝Ίɺ࠷ޙඌ͕า͖ऴΘΔ·Ͱͷಓֻ෦ͷࡏݿʹͳΔɻ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ʲࡐྉͷೖʳ ʲͷൢചʳ ※า͘ͷ͕ Ұ൪͍ ੍ݶ ୂྻશମͷεϧʔϓοτΛܾΊ͍ͯΔ = ੍ʢϘτϧωοΫʣ ੍ʢϘτϧωοΫʣҎ֎ͷϓϩηεͷೳྗΛ্ͤͯ͞εϧʔϓοτͷ૿Ճʹد༩͠ͳ͍ɻ ͦΕͲ͜Ζ͔ɺࡏݿۀඅ༻Λ૿Ճͤ͞ΩϟογϡϑϩʔͷѱԽΛͨΒ͢߹͋Δɻ
੍ʢϘτϧωοΫʣʹ͚ͩϑΥʔΧεͯ͠ରॲ͍ͯ͘͜͠ͱ͕શମ࠷దΛͨΒ͢ɻ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ྻͷ͞ = ࡏݿʢ ↘︎ ʣ ୂྻͷઌ಄ ୂྻશମͷΛҰ൪า͘ͷ͕͍ΧΤϧʹैΘͤΔ͜ͱͰྻ͕͘ͳͬͯ͠·͏͜ͱΛ੍ɻ ͔͠͠ɺεϧʔϓοτΛ্͛ΔͨΊʹɺઌ಄ͷΧΤϧͷεϐʔυΛԿʹ্͛Δ͔͕伴ɻ ͍ ͓ͦ
Α པΉ ੍ʹଞΛैଐͤ͞Δ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ෛՙʢॏ͍ՙʣΛࢄ = UP εϧʔϓοτʢ ↗︎ ʣ ੍ʢϘτϧωοΫʣͷෛՙΛܰͯ͘͠ೳྗΛ্ͤͨ͜͞ͱʹΑΓεϧʔϓοτ্͕ͨ͠ɻ ੍ͱͦΕҎ֎ʢඇ੍ʣͷ۠ผΛ͚ͭΔ͜ͱ͕ॏཁɻΤϦϠϑɾΰʔϧυϥοτࢯᐌ͘ɺ ʰ੍ͱඇ੍ͷ۠ผΛ͍ܽͨԿͳΔྗܾ࣮ͯ͠Λ݁ͳ͍ʱ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ʢඇ੍ϦιʔεͰ੍ ϦιʔεΛॿ͚Δ͜ͱͰʣ ੍ͷੑೳΛ্͛Δ
੍ʢϘτϧωοΫʣͱεϧʔϓοτ • ϋΠΩϯά • ͱ͋Δ • ܧଓվળʹ͚ͨ5εςοϓ
ͱ͋Δʢػց ਓखͰϞϊΛ࡞Δʣ ʮࠓͷ࣌·Ͱʹݸ࡞ͬͯग़ՙͤΑʯ 12࣌ 13࣌ 14࣌ 15࣌ 16࣌ 17࣌ Έཱͯ
25ݸ Έཱͯ 25ݸ Έཱͯ 25ݸ Έཱͯ 25ݸ ग़ՙ 100ݸ Έཱͯɾ ༹ࡁΈ ༹ 25ݸ ༹ 25ݸ ༹ 25ݸ ༹ 25ݸ Έཱͯʢฏۉ25ݸ/࣌ʣ ༹ʢฏۉ25ݸ/࣌ʣ ग़ՙ·ͰͷఔʮΈཱͯʯͱʮ༹ʯͷΈɻ ֤ఔͷฏۉॲཧྔ͔Βܭࢉ͢Δͱ17࣌·Ͱʹ100ݸ࡞Δ͜ͱ͕Ͱ͖Δͣ…
ͱ͋Δʢػց ਓखͰϞϊΛ࡞Δʣ ʮࠓͷ࣌·Ͱʹݸ࡞ͬͯग़ՙͤΑʯ 12࣌ 13࣌ 14࣌ 15࣌ 16࣌ 17࣌ Έཱͯ
2519ݸ Έཱͯ 2521ݸ Έཱͯ 2528ݸ Έཱͯ 2532ݸ ग़ՙ 10090ݸ Έཱͯɾ ༹ࡁΈ ༹ 2519ݸ ༹ 2521ݸ ༹ 25ݸ ༹ 25ݸ Έཱͯʢฏۉ25ݸ/࣌ʣ ༹ʢฏۉ25ݸ/࣌ʣ ΈཱͯఔʹΒ͖ͭʢ౷ܭతมಈʣ͕͋Γɺͦ͜ʹͭͳ͕Γʢґଘతࣄʣͷ͋Δ༹ఔʹ • 12࣌ͱ13࣌ɿॲཧೳྗΑΓগͳ͍෦͔͠ྲྀΕͯ͜ͳ͔ͬͨɻ • 14࣌ͱ15࣌ɿॲཧೳྗΛ͑ͨ෦͕ྲྀΕ͖͕ͯͨɺաॲཧͰ͖ͳ͔ͬͨɻ
ᶃ੍ʢϘτϧωοΫʣΛൃݟ͢Δ ॲཧೳྗɿ100 Քಇɿ100% ఔA ఔB ఔC ఔD ࡏݿɿ32 ࢿࡐೖ 100
ࡏݿɿ20 ग़ՙ 48 ॲཧೳྗɿ80 Քಇɿ100% ॲཧೳྗɿ60 Քಇɿ80% ॲཧೳྗɿ100 Քಇɿ48%
ग़ՙ 48 ॲཧೳྗɿ60 Քಇɿ80% ॲཧೳྗɿ100 Քಇɿ48% ᶃ੍ʢϘτϧωοΫʣΛൃݟ͢Δ ఔA ఔB ఔC
ఔD ࡏݿɿ32 ࢿࡐೖ 100 ࡏݿɿ20 ੍ʢϘτϧωοΫʣ εϧʔϓοτΛܾΊ͍ͯΔ ॲཧೳྗɿ100 Քಇɿ100% ॲཧೳྗɿ80 Քಇɿ100%
ग़ՙ 48 ॲཧೳྗɿ60 Քಇɿ80% ॲཧೳྗɿ100 Քಇɿ48% ఔA ఔB ఔC ఔD
ࢿࡐೖ 100 ࡏݿɿ20 ᶄ੍ʢϘτϧωοΫʣΛ࠷େ׆༻͢Δ Ճࢿͷલʹ·ͣపఈతʹ׆༻͢Δํ๏Λߟ͑Δ • Քಇ͕80%→100%Λࢦ͢ • ͍·ඞཁͳϞϊ͚ͩ࡞Δ • Bఔͷෛՙࢄ ࠷େ׆༻Λߟ͑Δ ॲཧೳྗɿ100 Քಇɿ100% ॲཧೳྗɿ80 Քಇɿ100% ࡏݿɿ32
ग़ՙ 60 ॲཧೳྗɿ60 Քಇɿ100% ॲཧೳྗɿ100 Քಇɿ60% ఔA ఔB ఔC ఔD
ࡏݿɿ8 ࢿࡐೖ 100 ࡏݿɿ32 ᶄ੍ʢϘτϧωοΫʣΛ࠷େ׆༻͢Δ ͜͏ͳΔͣ -24 +12 ඇ੍Λ੍ͷೳྗΛ͑ͯಇ͔͍ͤͯΔͨΊൃੜ͢Δ༨ࡏݿ →ɹݮΒ͍ͨ͠ʢҰఆͷόοϑΝඞཁ͚ͩͲʣ ʢඇ੍ϦιʔεͰ੍ϦιʔεΛॿ͚Δ͜ͱͰʣ ੍ͷੑೳΛ্͛Δ ॲཧೳྗɿ100 Քಇɿ100% ॲཧೳྗɿ80 Քಇɿ85%
ఔA ఔB ఔC ఔD ग़ՙ 60 ࢿࡐೖ 100→ 80 ᶅଞͷܾఆΛ੍ʢϘτϧωοΫʣʹैΘͤΔ
ϘτϧωοΫʹ߹Θͤͯࢿࡐೖ ※όοϑΝʢࡏݿɾظؒʣߟྀ ੍ʹଞΛैଐͤ͞Δ ࡏݿɿ8 ࡏݿɿ12 ॲཧೳྗɿ60 Քಇɿ100% ॲཧೳྗɿ100 Քಇɿ60% ॲཧೳྗɿ100 Քಇɿ80% ॲཧೳྗɿ80 Քಇɿ85% -20 ࡏݿͷݮগ = ΩϟογϡϑϩʔͷྑԽ
ఔA ఔB ఔC ఔD ग़ՙ 60 • ઃඋࢿ • ࡞ۀվળ
• ఔվળ ᶆ੍ͷೳྗΛߴΊΔ ࢿࡐೖ 80→ 90 Ͳ͏ͳΔ͔ʁ +10 +30ʁ Ϝμ͕࠷খԽ͞Εͨঢ়ଶͰɺࢿʹΑΓϘτϧωοΫͷೳྗ্ = εϧʔϓοτ্Λૂ͏ɻ ॲཧೳྗɿ60→90 ॲཧೳྗɿ100 ॲཧೳྗɿ100 ॲཧೳྗɿ80
ఔA ఔB ఔC ఔD ग़ՙ 68 ࡏݿɿ0 ࡏݿɿ22 ॲཧೳྗɿ90 Քಇɿ75.5%
ॲཧೳྗɿ100 Քಇɿ68% ॲཧೳྗɿ100 Քಇɿ90% ॲཧೳྗɿ80 Քಇɿ85% ᶇ੍͕ղফͨ͠Βᶃ੍Λݟ͚ͭΔɺʹΔ ࢿࡐೖ 80→ 90 +10 ੍ʢϘτϧωοΫʣ +8 ੍͕ҠΔͱγεςϜҎલͱશ͘ผʹͳΓɺݹ͍ํࣗମ੍͕ʹͳΔɻ ˞ଦੑʹؾΛ͚ͭͯܧଓతʹվળ͢Δඞཁ͕͋Δɻ -8
੍ʢϘτϧωοΫʣͱεϧʔϓοτ • ϋΠΩϯά • ͱ͋Δ • ܧଓվળʹ͚ͨ5εςοϓ
'PDVTJOH4UFQT ᶅ ଞͷશͯΛᶄͷܾఆʹ ैଐͤ͞Δ ᶆ ੍ͷೳྗΛߴΊΔ ᶄ ੍ΛͲ͏పఈ׆༻ ͢Δ͔ܾΊΔ ᶇ
੍͕ղফͨ͠Β ᶃʹΔ ᶃ ੍Λݟ͚ͭΔ
੍ͷλΠϓɾಛ ཧత੍ ࢢͷ੍ ํͷ੍ ஔઃඋɺਓతϦιʔεʹىҼ͢Δͷ धཁސ٬ͳͲͷࢢཁૉʹىҼ͢Δͷ ձࣾͷํ׳शʹىҼ͢Δͷ ※ѹతʹ͜ͷ੍͕ଟ͍ʂ ੍ͷಛ ✓
ࡏݿ͕ཷ·Δ ✓ ॲཧ͕͍࣌ؒ ✓ τϥϒϧ͕ଟ͍ ✓ Քಇߴ͍
੍ͷλΠϓɾಛ ཧత੍ ࢢͷ੍ ํͷ੍ ஔઃඋɺਓతϦιʔεʹىҼ͢Δͷ धཁސ٬ͳͲͷࢢཁૉʹىҼ͢Δͷ ձࣾͷํ׳शʹىҼ͢Δͷ ※ѹతʹ͜ͷ੍͕ଟ͍ʂ ੍ͷಛ ✓
ࡏݿ͕ཷ·Δ ✓ ॲཧ͕͍࣌ؒ ✓ τϥϒϧ͕ଟ͍ ✓ Քಇߴ͍ 㾎੍ʮѱʯͰͳ͘ʮࣄ࣮ʯ 㾎Ѳͯ͠ίϯτϩʔϧ͢Δ͜ͱ͕େࣄ
όοναΠζͱϦʔυλΠϜ • Ұճ͋ͨΓͷॲཧྔͷ͜ͱΛʮόονʯ • όονͷେ͖͞ΛʮόοναΠζʯ • όοναΠζΛখ͘͢͞Δ͜ͱͰϦʔυλΠϜ͕͘ͳΔ = εϧʔϓοτ্͕͕Δʢ߹͕͋Δʣ
࡞ۀͷྲྀΕ ଟ͘ͷ࡞ۀ ʮᶃηοτΞοϓλΠϜʢஈऔΓͷ࣌ؒʣ→ᶄϓϩηελΠϜʢॲཧͷ࣌ؒʣ → ᶅΩϡʔλΠϜ&ΣΠτλΠϜʢ࡞ۀͪͷ࣌ؒʣʯͷ࿈ଓ ※ͦͯ͠େମʹ͓͍ͯʮΩϡʔλΠϜ&ΣΠτλΠϜʯ͕͔͔͘Γ͕ͪɺͱ͞Ε͍ͯΔ ᶃηοτΞοϓλΠϜ ʢόοναΠζʹΑΔมಈͳ͠ʣ ᶄϓϩηελΠϜ ʢόοναΠζͰมಈʣ
ᶅΩϡʔλΠϜ&ΣΠτλΠϜ ʢόοναΠζͰมಈʣ ఔA ఔB ఔC
όοναΠζʹΑΔ-5ൺֱʢྫʣ ŰƄŕŧšŘţƄ:1 ŰƄŕŧšŘţƄ:5 ఔA ఔB ఔC ηοτΞοϓλΠϜ͕খ͍͞ɻ όοναΠζ͕খ͍͞ํ͕ɺ ϓϩηελΠϜ/͕ͪ࣌ؒ গͳ͘ͳΔɻ
ఔA ఔB ఔC ఔA ఔB ఔC ఔA ఔB ఔC ఔA ఔB ఔC ఔA ఔB ఔC
όοναΠζখͯ͘͞-5͕͘ͳΒͳ͍͜ͱ ✓ େ͖ͳόονͰେྔʹॲཧͨ͠ํ͕ϓϩηελΠϜ͕͘ͳΔ߹ → ಉ࣌ฒߦͰେྔੜ࢈Ͱ͖ΔػցΛಋೖ͢ΔͳͲʢਓखͩͱجຊ1͔ͭͣͭ͠ॲཧͰ͖ͳ͍ʣ ηοτΞοϓλΠϜ͕େ͖͍ɻ όοναΠζ͕খͯ͘͞ɺ ϓϩηελΠϜ/͕ͪ࣌ؒ͘ͳΒͳ͍ɻ ŰƄŕŧšŘţƄ:1 ŰƄŕŧšŘţƄ:5
όοναΠζΛখ͘͢͞ΔϝϦοτᶃ •εϧʔϓοτ্͕͕Δʢ߹͕͋Δʣ • ૣظʹग़ՙ͢Δ͜ͱͰࠜઇߏతʹࣄۀΞτΧϜͷ࠷େԽʹد༩͢Δ
όοναΠζΛখ͘͢͞ΔϝϦοτᶃ •εϧʔϓοτ্͕͕Δʢ߹͕͋Δʣ • ૣظʹग़ՙ͢Δ͜ͱͰࠜઇߏతʹࣄۀΞτΧϜͷ࠷େԽʹد༩͢Δ Φʔόʔϔου͕͋ͬͨͱͯ͠ɺՁͷੵΈ্͛Λૣظʹ։࢝͢Δ͜ͱͰΞτΧϜʹد༩͢Δ߹
όοναΠζΛখ͘͢͞ΔϝϦοτᶄ •ෆ࣮֬ੑʹΑΔϜμΛগͳ͘͢Δ ɹ - ϛεෆ۩߹ɺೝࣝҧ͍ɺఆ֎ͷࣄͳͲΛૣظʹݕ͢Δ͜ͱͰɺϜμΛ࠷খԽ͢Δ ※ඇఆܕ࡞ۀɺ৽͍͠औΓΈɺ࣭తͳΒ͖ͭɺ࣮ݧతཁૉ͕ڧ͍ͳͲͷ߹༗ޮ ʢෆ࣮֬ੑ͕͚͘Εେ͖ͳόονͰਐΊͯ͠·͏ํ͕ྑ͍ʣ
ιϑτΣΞ։ൃݱͷ ࠇాथ / ࣄۀՁͱΤϯδχΞϦϯάɾϦιʔεޮੑͱϑϩʔޮੑ ࠇా͞Μࢿྉͷ͜ͷΜͷ
ιϑτΣΞ։ൃݱͷ ࠇాथ / ࣄۀՁͱΤϯδχΞϦϯάɾϦιʔεޮੑͱϑϩʔޮੑ ࠇా͞Μࢿྉͷ͜ͷΜͷ ྫʣCSΞΫγϣϯ࠷େԽΛ͍ͯ͘͠ϓϩμΫτνʔϜ ʮεϧʔϓοτʯʮࡏݿʯʮۀඅ༻ʯΛܭଌɾϞχλϦϯά ※εϧʔϓοτՁΛࢢʹఏڙ͢Δ·Ͱʢto CashʣͳͷͰɺ ։ൃ͚ͩͰͷܭଌͰͳ͘ʮاը~։ൃ~ݕূʯʢBMLαΠΫϧʣͷશମΛର
ιϑτΣΞ։ൃݱͷ ͱ͋ΔϓϩμΫτνʔϜ ੍ʢϘτϧωοΫʣ
ιϑτΣΞ։ൃݱͷ ੍ʢϘτϧωοΫʣ
ιϑτΣΞ։ൃݱͷ
ιϑτΣΞ։ൃݱͷ Before Now ݕূ໘ͷʮՔಇʯՄࢹԽ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ݕূ໘ʢը໘ʣͷՃ։ൃ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ݕূ໘ʢը໘ʣͷՃ։ൃ ᶅ ଞͷશͯΛᶄͷܾఆ ʹैଐͤ͞Δ ᶆ ੍ͷೳྗΛߴΊΔ ᶄ ੍ΛͲ͏పఈ׆༻ ͢Δ͔ܾΊΔ ᶇ ੍͕ղফͨ͠Β ᶃʹΔ ᶃ ੍Λݟ͚ͭΔ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ݕূ໘ʢը໘ʣͷՃ։ൃ ᶅ ଞͷશͯΛᶄͷܾఆ ʹैଐͤ͞Δ ᶆ ੍ͷೳྗΛߴΊΔ ᶄ ੍ΛͲ͏పఈ׆༻ ͢Δ͔ܾΊΔ ᶇ ੍͕ղফͨ͠Β ᶃʹΔ ᶃ ੍Λݟ͚ͭΔ ܧଓతվળαΠΫϧΛճͯ͠ Ҋ݅LT͓Αͦ30%ॖʂʂ
ιϑτΣΞ։ൃݱͷ λεΫA λεΫB λεΫC λεΫD λεΫE λεΫF λεΫG ϓϩδΣΫτόοϑΝ ΫϦςΟΧϧνΣʔϯ
ʢ࡞ۀఔͷैଐؔͱϦιʔεͷैଐؔͷ྆ํΛߟྀʹೖΕͯɺ ࡞ۀॴཁظؒΛܾΊ͍ͯΔ࠷͍࡞ۀͷྲྀΕʣ όοϑΝλεΫຖͰͳ͘PJશମͱͯ࣋ͪ͠ɺ ΫϦςΟΧϧνΣʔϯ্ͷλεΫʹԆ͕ൃੜͨ͠ࡍʹऔΓ่͢
ιϑτΣΞ։ൃݱͷ ϜμΛݮΒͨ͠Γ੍ͷೳྗUPͨ͠Γ͢ΔHowୡ https://www.slideshare.net/andrefaria/mob-programming https://www.amazon.co.jp/DevOps- Handbook-World-Class-Reliability- Organizations-ebook/dp/B09G2GS39R/ https://www.ohmsha.co.jp/book/9784274217883/
·ͱΊ 㾎اۀͷΰʔϧ͓ۚΛ͚ଓ͚Δ͜ͱ 㾎εϧʔϓοτɾࡏݿɾۀඅ༻ 㾎౷ܭతมಈʢΒ͖ͭʣͱґଘతࣄʢͭͳ͕ΓʣͷΈ߹Θͤ 㾎੍ʢϘτϧωοΫʣ͕શମͷεϧʔϓοτΛܾΊΔ 㾎੍ͱඇ੍Λ۠ผͯ͠ɺ੍ʹ͚ͩϑΥʔΧε 㾎ʰ੍ͱඇ੍ͷ۠ผΛ͍ܽͨԿͳΔྗܾ࣮ͯ͠Λ݁ͳ͍ʱ 㾎ଦੑʹؾΛ͚ͭͯܧଓతʹվળ͢Δʢ'PDVTJOH4UFQTʣ 㾎ʰ੍͕ҠΔͱγεςϜҎલͱશ͘ผʹͳΓɺݹ͍ํࣗମ੍͕ʹͳΔʱ 㾎੍ʮѱʯͰͳ͘ʮࣄ࣮ʯɻίϯτϩʔϧ͢Δ͜ͱ͕େࣄɻ
㾎όοναΠζΛখ͘͢͞ΔͱϦʔυλΠϜ͕͘ͳΔεϧʔϓοτ͕͋Δ 㾎࡞ۀ͕࣌ؒ͘ͳΔʢ߹͕͋Δʣɻ 㾎ෆ࣮֬ੑʹΑΔϜμ͕ݮΔɻ
·ͱΊ ΰʔϧυϥοτത࢜ᐌ͘ ʮ50$ΛҰݴͰݴ͑ͱ͍͏ͳΒɺͦΕʮϑΥʔΧεʯ ͩɻ͔͠͠ɺେࣄͳͷɺϑΥʔΧε͢ΔͱɺԿΛ͢ ͖͔͍ͬͯΔͱಉ࣌ʹɺԿΛ͖͢Ͱͳ͍͔ͬͯ ͍Δͱ͍͏͜ͱͩɻͳͥͳΒɺͯ͢ʹϑΥʔΧε͢Δ ͷɺͲΕʹϑΥʔΧε͠ͳ͍ͷͱಉ͔ͩ͡Βͩɻʯ
·ͱΊ ݸผ࠷దͷूੵ㱠શମ࠷ద ΤϯδχΞϦϯάͰ੍Λίϯτϩʔϧͯ͠ ࣄۀՁΛߴΊ͍͖ͯ·͠ΐ͏