Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlowの基礎
Search
Norihiro Shimoda
March 20, 2017
Technology
2
4.4k
TensorFlowの基礎
TensorFlowの概要と技術的な基本だけをまとめました
Norihiro Shimoda
March 20, 2017
Tweet
Share
More Decks by Norihiro Shimoda
See All by Norihiro Shimoda
ぼくのかんがえたさいきょうの機械学習プロジェクト進行法(PoC/デモ編)
rindai87
10
20k
FindYourCandyでの転移学習の話
rindai87
4
15k
Google I/O 報告会(ML)担当
rindai87
3
9.6k
最近のTensorFlowの話
rindai87
1
1.5k
TensorFlowとGCPの簡単な紹介
rindai87
3
4.6k
TFv1.0の概要+HighLevelAPI/Keras
rindai87
4
2.2k
How should engineers survive during AI era
rindai87
5
28k
Let's stand up against "Do Artificial Intelligence" with proper knowledge
rindai87
6
1.9k
Talk about ML and DL for happy engineer's life
rindai87
40
15k
Other Decks in Technology
See All in Technology
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
42k
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
570
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
370
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
Context Engineeringの取り組み
nutslove
0
310
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
210
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
130
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
350
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
120
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
432
66k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
690
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
64
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
910
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
Context Engineering - Making Every Token Count
addyosmani
9
650
Exploring anti-patterns in Rails
aemeredith
2
250
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Chasing Engaging Ingredients in Design
codingconduct
0
110
Transcript
TensorFlowの基礎
⾃自⼰己紹介 • 下⽥田倫倫⼤大(@rindai87) • TensorFlow User Group(TFUG)主催者 • 最近GDE(Google Developer
Expert)の ML Expertになりました
TensorFlowの概要 TensorFlowとはそもそも 何かについて説明します
TensorFlowとは? • Googleがオープンソース化した機械学習 のライブラリ • 2015年年11⽉月に公開 • Google社内でも実際に使われている(と ⾔言われている)
TensorFlowのモデル 1. 学習モデルをグラフと して定義する 2. 学習を実際にどう⾏行行う かも定義する – 学習の評価⽅方法 –
最適化の⽅方法 – CPU or GPU – スタンドアロン or 分散 3. 定義に従って計算処理理 をデバイス上で実⾏行行さ せる
TensorFlowの歴史
TensorBoardなどのツール
その他のTensorFlow情報 1. Google内でのTensorFlow 2. TensorFlowの事例例 3. TensorFlowコミュニティ 4. 企業でのTensorFlow https://goo.gl/kiU4qd
TensorFlowの基本 TensorFlowを利利⽤用する上での 基本について説明します
TensorFlowにありがちな勘違い TensorFlowは深層学習に 特化したツールである 10
TensorFlowの超基本 OP Input Output OP OP Input グラフを意識識しながら処理理を記述して 最後にどびゃっと実⾏行行する 11
TensorFlowのパラダイム • はじめにテンソルの演算グラフを作る • グラフの実⾏行行単位をセッションという • 定数、変数、プレースホルダーを宣⾔言できる • 作ったグラフはデバイス(CPUやGPU)に展 開して実⾏行行する
• 分散処理理も可能である 12
TensorFlowのパラダイム • はじめにテンソルの演算グラフを作る • グラフの実⾏行行単位をセッションという • 定数、変数、プレースホルダーを宣⾔言できる • 作ったグラフはデバイス(CPUやGPU)に展 開して実⾏行行する
• 分散処理理も可能である ということを、Pythonをインターフェースとして ⾏行行っているフレームワーク 機械学習に関する便便利利なヘルパー関数がいっぱい あるのがポイント 13
ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)
• 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 14
ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)
• 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 15
1+2 = 3の⾜足し算 16
演算(Operation) x(定数) y(定数) + 演算がグラフのノードとなる(この場合は加算の演算) tf.add() tf.constant() tf.constant() 17
演算(Operation) x(定数) y(定数) + 演算がグラフのノードとなる(この場合は加算の演算) tf.add() tf.constant() tf.constant() 1 2
3 18
ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)
• 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 19
カウントアップ 20
変数(Variable) inc(定数) + cnt(変数) 通常のプログラミング⾔言語の変数などと同じように 代⼊入可能な箱として変数がある tf.assign() tf.Variable() tf.constant() tf.add()
1 0 21
変数(Variable) inc(定数) + cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() 1 0
1 通常のプログラミング⾔言語の変数などと同じように 代⼊入可能な箱として変数がある 22
変数(Variable) inc(定数) + cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() 1 1
2 通常のプログラミング⾔言語の変数などと同じように 代⼊入可能な箱として変数がある 23
変数(Variable) inc(定数) + cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() 1 2
3 通常のプログラミング⾔言語の変数などと同じように 代⼊入可能な箱として変数がある 24
ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)
• 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 25
いろんな値を⼊入⼒力力する 26
プレースホルダー(Placeholder) y (プレースホルダ) x(定数) + tf.constant() tf.add() tf.placeholder() あらかじめ箱を作っておいて 実⾏行行時に好きな値を⼊入⼒力力させる
1 27
プレースホルダー(Placeholder) y (プレースホルダ) x(定数) + tf.constant() tf.add() tf.placeholder() feed_̲dict 1
1 2 あらかじめ箱を作っておいて 実⾏行行時に好きな値を⼊入⼒力力させる 28
プレースホルダー(Placeholder) y (プレースホルダ) x(定数) + tf.constant() tf.add() tf.placeholder() feed_̲dict 3
1 4 あらかじめ箱を作っておいて 実⾏行行時に好きな値を⼊入⼒力力させる 29
ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)
• 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 30
実⾏行行環境を分ける 31
セッション 1(定数) + cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() 1(定数) +
cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() セッションにより グラフの実⾏行行環境が まるっと独⽴立立する 名前空間のようなもの tf.Session() tf.Session() 32
ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)
• 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 33
テンソル(Tensor) のランクを⼤大きくする ここまでの話を 多次元の値に拡張 34
テンソル ランク どうなる 0 スカラ(要はただの数値) 1 ベクトル(配列列) 2 ⾏行行列列(2次元配列列) 3
3次元配列列(⾏行行列列に厚みがある感じ) n n次元配列列(イメージできない世界) 要は取り扱うデータ構造のことだと思ってください 今までの話はここ 35
多次元版の⾜足し算 36
⼊入⼒力力となるテンソルが違うだけ x(定数) y(定数) + 演算がグラフのノードとなる(この場合は加算の演算) tf.add() tf.constant() tf.constant() [[1,2], [1,2]]
[[3,4], [3,4]] [[4,6], [4,6]] 37
この先は? • ここまででTensorFlowの基礎中の基礎は 完了了となります • 残念念がら、機械学習や深層学習について は⾝身についたわけではありません • TensorFlow本家のチュートリアルなどで TensorFlow⾃自体、また深層学習の知識識を
深める必要があります
Thank You !! 39