TensorFlowの基礎

 TensorFlowの基礎

TensorFlowの概要と技術的な基本だけをまとめました

B5e4cea01a88ca6e79a962b3e0004405?s=128

Norihiro Shimoda

March 20, 2017
Tweet

Transcript

  1. TensorFlowの基礎

  2. ⾃自⼰己紹介 • 下⽥田倫倫⼤大(@rindai87) • TensorFlow User  Group(TFUG)主催者 • 最近GDE(Google  Developer

     Expert)の ML  Expertになりました
  3. TensorFlowの概要 TensorFlowとはそもそも 何かについて説明します

  4. TensorFlowとは? • Googleがオープンソース化した機械学習 のライブラリ • 2015年年11⽉月に公開 • Google社内でも実際に使われている(と ⾔言われている)

  5. TensorFlowのモデル 1. 学習モデルをグラフと して定義する 2. 学習を実際にどう⾏行行う かも定義する – 学習の評価⽅方法 –

    最適化の⽅方法 – CPU  or  GPU – スタンドアロン or  分散 3. 定義に従って計算処理理 をデバイス上で実⾏行行さ せる
  6. TensorFlowの歴史

  7. TensorBoardなどのツール

  8. その他のTensorFlow情報 1. Google内でのTensorFlow 2. TensorFlowの事例例 3. TensorFlowコミュニティ 4. 企業でのTensorFlow https://goo.gl/kiU4qd

  9. TensorFlowの基本 TensorFlowを利利⽤用する上での 基本について説明します

  10. TensorFlowにありがちな勘違い TensorFlowは深層学習に 特化したツールである 10

  11. TensorFlowの超基本 OP Input Output OP OP Input グラフを意識識しながら処理理を記述して 最後にどびゃっと実⾏行行する 11

  12. TensorFlowのパラダイム • はじめにテンソルの演算グラフを作る • グラフの実⾏行行単位をセッションという • 定数、変数、プレースホルダーを宣⾔言できる • 作ったグラフはデバイス(CPUやGPU)に展 開して実⾏行行する

    • 分散処理理も可能である 12
  13. TensorFlowのパラダイム • はじめにテンソルの演算グラフを作る • グラフの実⾏行行単位をセッションという • 定数、変数、プレースホルダーを宣⾔言できる • 作ったグラフはデバイス(CPUやGPU)に展 開して実⾏行行する

    • 分散処理理も可能である ということを、Pythonをインターフェースとして ⾏行行っているフレームワーク 機械学習に関する便便利利なヘルパー関数がいっぱい あるのがポイント 13
  14. ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)

    • 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 14
  15. ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)

    • 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 15
  16. 1+2  =  3の⾜足し算 16

  17. 演算(Operation) x(定数) y(定数) + 演算がグラフのノードとなる(この場合は加算の演算) tf.add() tf.constant() tf.constant() 17

  18. 演算(Operation) x(定数) y(定数) + 演算がグラフのノードとなる(この場合は加算の演算) tf.add() tf.constant() tf.constant() 1 2

    3 18
  19. ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)

    • 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 19
  20. カウントアップ 20

  21. 変数(Variable) inc(定数) + cnt(変数) 通常のプログラミング⾔言語の変数などと同じように 代⼊入可能な箱として変数がある tf.assign() tf.Variable() tf.constant() tf.add()

    1 0 21
  22. 変数(Variable) inc(定数) + cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() 1 0

    1 通常のプログラミング⾔言語の変数などと同じように 代⼊入可能な箱として変数がある 22
  23. 変数(Variable) inc(定数) + cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() 1 1

    2 通常のプログラミング⾔言語の変数などと同じように 代⼊入可能な箱として変数がある 23
  24. 変数(Variable) inc(定数) + cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() 1 2

    3 通常のプログラミング⾔言語の変数などと同じように 代⼊入可能な箱として変数がある 24
  25. ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)

    • 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 25
  26. いろんな値を⼊入⼒力力する 26

  27. プレースホルダー(Placeholder) y (プレースホルダ) x(定数) + tf.constant() tf.add() tf.placeholder() あらかじめ箱を作っておいて 実⾏行行時に好きな値を⼊入⼒力力させる

    1 27
  28. プレースホルダー(Placeholder) y (プレースホルダ) x(定数) + tf.constant() tf.add() tf.placeholder() feed_̲dict 1

    1 2 あらかじめ箱を作っておいて 実⾏行行時に好きな値を⼊入⼒力力させる 28
  29. プレースホルダー(Placeholder) y (プレースホルダ) x(定数) + tf.constant() tf.add() tf.placeholder() feed_̲dict 3

    1 4 あらかじめ箱を作っておいて 実⾏行行時に好きな値を⼊入⼒力力させる 29
  30. ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)

    • 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 30
  31. 実⾏行行環境を分ける 31

  32. セッション 1(定数) + cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() 1(定数) +

    cnt(変数) tf.assign() tf.Variable() tf.constant() tf.add() セッションにより グラフの実⾏行行環境が まるっと独⽴立立する 名前空間のようなもの tf.Session() tf.Session() 32
  33. ここだけ押さえればTensorFlowが 分かる簡単な例例 • 例例1:⾜足し算 – 演算(operation) • 例例2:カウントアップ – 変数(Variable)

    • 例例3:⼊入⼒力力値をいろいろと変える – プレースホルダー(Placeholder) • 例例4:セッションを使う – セッション(Session) • 例例5:⾼高ランクなテンソルの演算 – テンソル(Tensor) 33
  34. テンソル(Tensor) のランクを⼤大きくする ここまでの話を 多次元の値に拡張 34

  35. テンソル ランク どうなる 0 スカラ(要はただの数値) 1 ベクトル(配列列) 2 ⾏行行列列(2次元配列列) 3

    3次元配列列(⾏行行列列に厚みがある感じ) n n次元配列列(イメージできない世界) 要は取り扱うデータ構造のことだと思ってください 今までの話はここ 35
  36. 多次元版の⾜足し算 36

  37. ⼊入⼒力力となるテンソルが違うだけ x(定数) y(定数) + 演算がグラフのノードとなる(この場合は加算の演算) tf.add() tf.constant() tf.constant() [[1,2], [1,2]]

    [[3,4], [3,4]] [[4,6], [4,6]] 37
  38. この先は? • ここまででTensorFlowの基礎中の基礎は 完了了となります • 残念念がら、機械学習や深層学習について は⾝身についたわけではありません • TensorFlow本家のチュートリアルなどで TensorFlow⾃自体、また深層学習の知識識を

    深める必要があります
  39. Thank  You  !! 39