best model might make terrible predictions • Also want to check model assumptions • Predictive checks: Can use samples from posterior to simulate observations • NB: Assumption about sampling is assumption
6 9 0.89 0 1000 3000 number of water samples Frequency 0 3 6 9 0.38 0 1000 3000 number of water samples Frequency 0 3 6 9 0.64 0 1000 3000 number of water samples Frequency 0 3 6 9 0.000 0.010 0.020 probability of water probability 0 0.5 1 (A) p = 0.38 (B) p = 0.64 (C) p = 0.89 A B C Merged Figure 3.4 0 1000 3000 Frequency 0 3 6 9 0.89 0 1000 3000 number of water samples Frequency 0 3 6 9 0 1000 3000 number of water samples Frequency 0 3 6 9 0.64 0 1000 3000 number of water samples Frequency 0 3 6 9 0.000 0.010 0.020 probability of water probability 0 0.5 1 (B) p = 0.64 (C) p = 0.89 A B C Merged
• No universally best way to evaluate adequacy of model-based predictions • No way to justify always using a threshold like 5% • Good predictive checks always depend upon purpose and imagination “It would be very nice to have a formal apparatus that gives us some ‘optimal’ way of recognizing unusual phenomena and inventing new classes of hypotheses [...]; but this remains an art for the creative human mind.” —E.T. Jaynes (1922–1998)
of approximation • Known to be wrong Regression • Descriptively accurate • Mechanistically wrong • General method of approximation • Taken too seriously
result in dampening • Damped fluctuations end up Gaussian • No information left, except mean and variance • Can’t infer process from distribution! • Epistemological perspective • Know only mean and variance • Then least surprising and most logical (maximum entropy) distribution is Gaussian • Nature likes maximum entropy distributions
“General Linear Model”: t-test, single regression, multiple regression, ANOVA, ANCOVA, MANOVA, MANCOVA, yadda yadda yadda • All the same thing • Learn strategy, not procedure
the outcomes? 2. How are the outcomes generated (what is likelihood)? 3. What are the predictors, if any? 4. How do predictors relate to likelihood? 5. What are the priors? From Breath of Bones: A Tale of the Golem
which is now 2-dimensional • Grid approximation: Compute posterior for many combinations of mu and sigma -*/&"3 . 153.0 154.0 155.0 156.0 7.0 7.5 8.0 8.5 9.0 mu sigma ' S E U C 3 DPEF ).ǭ .(+' Ǐ(0 Ǯ ).ǭ .(+' Ǐ.$"( Ǯ
WBMVFT JO Y ćJT JT XIBU JU MPPLT MJLF XJUI FYQMBOBUJPO UP GPMMPX IJ ∼ /PSNBM(µJ, σ) >OLNHOLKRRG@ µJ = α + βYJ >OLQHDUPRGHO@ α ∼ /PSNBM(, ) >α SULRU@ β ∼ /PSNBM(, ) >β SULRU@ σ ∼ 6OJGPSN(, ) >σ SULRU@ "HBJO *WF MBCFMFE FBDI MJOF PO UIF SJHIUIBOE TJEF CZ UIF UZQF PG EFĕOJUJPO JU FODPEFT 8FMM EJTDVTT UIFN JO UVSOT -JLFMJIPPE 5P EFDPEF BMM PG UIJT MFUT CFHJO XJUI KVTU UIF MJLFMJIPPE UIF ĕSTU MJOF PG UIF NPEFM ćJT JT OFBSMZ JEFOUJDBM UP CFGPSF FYDFQU OPX UIFSF JT B MJUUMF JOEFY J PO UIF µ BT XFMM BT UIF I ćJT JT OFDFTTBSZ OPX CFDBVTF UIF NFBO mean when xi = 0 “intercept” change in mean, per unit change xi “slope” weight on row i mean on row i