$30 off During Our Annual Pro Sale. View Details »

Statistical Rethinking 2023 - Lecture 07

Statistical Rethinking 2023 - Lecture 07

Richard McElreath

January 22, 2023
Tweet

More Decks by Richard McElreath

Other Decks in Education

Transcript

  1. In nite causes, nite data Estimator might exist, but not

    be useful Struggle against causation: How to use causal assumptions to design estimators, contrast alternative models Struggle against data: How to make the estimators work X Y Z B A C
  2. Problems of Prediction What function describes these points? ( tting,

    compression) What function explains these points? (causal inference) What would happen if we changed a point’s mass? (intervention) What is the next observation from the same process? (prediction) 35 40 45 50 55 60 600 800 1000 1200 mass (kg) brain volume (cc)
  3. Leave-one-out cross-validation (1) Drop one point (2) Fit line to

    remaining (3) Predict dropped point (4) Repeat (1) with next point (5) Score is error on dropped
  4. Leave-one-out cross-validation (1) Drop one point (2) Fit line to

    remaining (3) Predict dropped point (4) Repeat (1) with next point (5) Score is error on dropped
  5. Leave-one-out cross-validation (1) Drop one point (2) Fit line to

    remaining (3) Predict dropped point (4) Repeat (1) with next point (5) Score is error on dropped
  6. Leave-one-out cross-validation (1) Drop one point (2) Fit line to

    remaining (3) Predict dropped point (4) Repeat (1) with next point (5) Score is error on dropped
  7. Leave-one-out cross-validation (1) Drop one point (2) Fit line to

    remaining (3) Predict dropped point (4) Repeat (1) with next point (5) Score is error on dropped In: 318 Out: 619
  8. Bayesian Cross-Validation We use the entire posterior, not just a

    point prediction Cross-validation score is: MJNJU UIFPSFN UP QSPWJEF B NFBTVSF PG UIF TUBOEBSE FSSPS TĽŀĶŀ = / WBS(QTJT J) NCFS PG PCTFSWBUJPOT BOE QTJT J JT UIF 14*4 FTUJNBUF GPS PCTFSWBUJPO J *G UIJT F TFOTF CF TVSF UP MPPL BU UIF DPEF CPY BU UIF FOE PG UIJT TFDUJPO QBHF   FUPTNPPUIFE DSPTTWBMJEBUJPO $SPTTWBMJEBUJPO FTUJNBUFT UIF PVUPGTBNQMF ĿIJıĶİŁĶŃIJıIJĻŀĶŁņ MQQE QBHF   *G ZPV IBWF / PCTFSWBUJPOT BOE ĕU UIF QQJOH B TJOHMF PCTFSWBUJPO ZJ FBDI UJNF UIFO UIF PVUPGTBNQMF MQQE JT UIF TVN BDZ GPS FBDI PNJUUFE ZJ  MQQE $7 = / J=  4 4 T= MPH 1S(ZJ|θ−J,T) NQMFT GSPN B .BSLPW DIBJO BOE θ−J,T JT UIF TUI TBNQMF GSPN UIF QPTUFSJPS EJTUSJ S PCTFSWBUJPOT PNJUUJOH ZJ  NQMJOH SFQMBDFT UIF DPNQVUBUJPO PG / QPTUFSJPS EJTUSJCVUJPOT CZ VTJOH BO FTUJNBUF -5 -4 -3 -2 -1 0 0.0 0.5 1.0 1.5 log posterior prob of observation Density
  9. Bayesian Cross-Validation FSF / JT UIF OVNCFS PG PCTFSWBUJPOT BOE

    QTJT J JT UIF 14*4 FTUJNBUF GPS PCTFSWBUJPO J *G TOU RVJUF NBLF TFOTF CF TVSF UP MPPL BU UIF DPEF CPY BU UIF FOE PG UIJT TFDUJPO QBHF  FSUIJOLJOH 1BSFUPTNPPUIFE DSPTTWBMJEBUJPO $SPTTWBMJEBUJPO FTUJNBUFT UIF PVUPGTBN ĴĽļĶĻŁńĶŀIJĽĿIJıĶİŁĶŃIJıIJĻŀĶŁņ MQQE QBHF   *G ZPV IBWF / PCTFSWBUJPOT BOE ĕU EFM / UJNFT ESPQQJOH B TJOHMF PCTFSWBUJPO ZJ FBDI UJNF UIFO UIF PVUPGTBNQMF MQQE JT UIF T IF BWFSBHF BDDVSBDZ GPS FBDI PNJUUFE ZJ  MQQE $7 = / J=  4 4 T= MPH 1S(ZJ|θ−J,T) SF T JOEFYFT TBNQMFT GSPN B .BSLPW DIBJO BOE θ−J,T JT UIF TUI TBNQMF GSPN UIF QPTUFSJPS EJ PO DPNQVUFE GPS PCTFSWBUJPOT PNJUUJOH ZJ  *NQPSUBODF TBNQMJOH SFQMBDFT UIF DPNQVUBUJPO PG / QPTUFSJPS EJTUSJCVUJPOT CZ VTJOH BO FTUJN IF JNQPSUBODF PG FBDI J UP UIF QPTUFSJPS EJTUSJCVUJPO 8F ESBX TBNQMFT GSPN UIF GVMM QPTUFSJPS VUJPO Q(θ|Z) CVU XF XBOU TBNQMFT GSPN UIF SFEVDFE MFBWFPOFPVU QPTUFSJPS EJTUSJCVUJPO Q(θ|Z XF SFXFJHIU FBDI TBNQMF T CZ UIF JOWFSTF PG UIF QSPCBCJMJUZ PG UIF PNJUUFE PCTFSWBUJPO  log pointwise predictive density Pages 210 and 218 N data points S samples from posterior log probability of each point i, computed with posterior that omits point i average log probability for point i
  10. Cross-validation For simple models, more parameters improves t to sample

    But may reduce accuracy of predictions out of sample Most accurate model trades o exibility with over tting 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 polynomial terms relative error error in sample error out of sample
  11. 2nd degree polynomial error in sample error out of sample

    1 2 3 4 5 6 200 600 1000 polynomial terms prediction error
  12. 2nd degree polynomial error in sample error out of sample

    1 2 3 4 5 150 200 250 300 polynomial terms prediction error
  13. Regularization Over tting depends upon the priors Skeptical priors have

    tighter variance, reduce exibility Regularization: Function nds regular features of process Good priors are o en tighter than you think!
  14. 1 2 3 4 5 150 200 250 300 polynomial

    terms prediction error in out β j ∼ Normal(0,10) μ i = α + m ∑ j=1 β j xj i
  15. 1 2 3 4 5 150 200 250 300 polynomial

    terms prediction error in out β j ∼ Normal(0,10) β j ∼ Normal(0,10) β j ∼ Normal(0,1) β j ∼ Normal(0,1)
  16. 1 2 3 4 5 150 200 250 300 polynomial

    terms prediction error in out β j ∼ Normal(0,10) β j ∼ Normal(0,10) β j ∼ Normal(0,1) β j ∼ Normal(0,1) β j ∼ Normal(0,0.5) β j ∼ Normal(0,0.5)
  17. in out 1 2 3 4 5 150 200 250

    300 350 400 polynomial terms prediction error β j ∼ Normal(0,0.1)
  18. Regularizing priors How to choose width of prior? For causal

    inference, use science For pure prediction, can tune the prior using cross-validation Many tasks are a mix of inference and prediction No need to be perfect, just better
  19. Prediction penalty 1 2 3 4 5 150 200 250

    300 polynomial terms prediction error in out
  20. Prediction penalty 1 2 3 4 5 150 200 250

    300 polynomial terms prediction error 1 2 3 4 5 0 50 100 150 200 polynomial terms out-of-sample penalty in out
  21. Penalty prediction For N points, cross-validation requires tting N models

    What if you could estimate the penalty from a single model t? Good news! You can: Importance sampling (PSIS) Information criteria (WAIC) 1 2 3 4 5 0 50 100 150 200 polynomial terms out-of-sample penalty
  22. 1 2 3 4 5 150 200 250 300 polynomial

    terms prediction error 1 2 3 4 5 30 35 40 45 50 55 60 polynomial terms log pointwise predictive density WAIC PSIS lppd leave-one-out cross-validation
  23. Over t Under t WAIC,PSIS,CV measure over tting Regularization manages

    over tting None directly address causal inference Important for understanding statistical inference
  24. Model Mis-selection Do not use predictive criteria (WAIC, PSIS, CV)

    to choose a causal estimate Predictive criteria actually prefer confounds & colliders Example: Plant growth experiment H0 H1 T F
  25. H 1 ∼ Normal(μ i , σ) μ i =

    H 0 × p i p i = α + β T T i + β F F i H 1 ∼ Normal(μ i , σ) μ i = H 0 × p i p i = α + β T T i Wrong adjustment set for total causal e ect of treatment (blocks mediating path) Correct adjustment set for total causal e ect of treatment H0 H1 T F
  26. H 1 ∼ Normal(μ i , σ) μ i =

    H 0 × p i p i = α + β T T i + β F F i H 1 ∼ Normal(μ i , σ) μ i = H 0 × p i p i = α + β T T i -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0 4 8 12 effect of treatment (posterior) Density correct biased
  27. H 1 ∼ Normal(μ i , σ) μ i =

    H 0 × p i p i = α + β T T i + β F F i H 1 ∼ Normal(μ i , σ) μ i = H 0 × p i p i = α + β T T i m6.8 m6.7 350 360 370 380 390 400 410 deviance PSIS H1 ~ H0 + T + F H1 ~ H0 + T Wrong model wins at prediction
  28. m6.8 m6.7 350 360 370 380 390 400 410 deviance

    PSIS H1 ~ H0 + T + F H1 ~ H0 + T Wrong model wins at prediction Score in sample Score out of sample Standard error of score PSIS contrast and standard error
  29. 1.2 1.4 1.6 1.8 2.0 growth no fungus yo fungus

    treatment control H0 H1 T F Why does the wrong model win at prediction?
  30. 1.2 1.4 1.6 1.8 2.0 growth no fungus yo fungus

    1.2 1.4 1.6 1.8 2.0 growth control treatment treatment control fungus no fungus H0 H1 T F Why does the wrong model win at prediction? Fungus is in fact a better predictor than treatment
  31. Model Mis-selection Do not use predictive criteria (WAIC, PSIS, CV)

    to choose a causal estimate However, many analyses are mixes of inferential and predictive chores Still need help nding good functional descriptions while avoiding over tting H0 H1 T F
  32. Outliers & Robust Regression Some points are more in uential

    than others “Outliers”: Observations in the tails of predictive distribution Outliers indicate predictions are possibly overcon dent, unreliable e model doesn’t expect enough variation -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
  33. Outliers & Robust Regression Dropping outliers is bad: Just ignores

    the problem; predictions are still bad! It’s the model that’s wrong, not the data First, quantify in uence of each point Second, use a mixture model (robust regression) -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
  34. Outliers & Robust Regression Divorce rate example Maine and Idaho

    both unusual Maine: high divorce for trend Idaho: low divorce for trend -2 -1 0 1 2 3 -2 -1 0 1 2 Age at marriage (std) Divorce rate (std) Idaho Maine
  35. Outliers & Robust Regression Quantify in uence: PSIS k statistic

    WAIC penalty term (“e ective number of parameters”) 0.0 0.5 1.0 0.0 0.5 1.0 1.5 2.0 PSIS Pareto k WAIC penalty Idaho Maine
  36. Outliers & Robust Regression 0.0 0.5 1.0 0.0 0.5 1.0

    1.5 2.0 PSIS Pareto k WAIC penalty Idaho Maine -2 -1 0 1 2 3 -2 -1 0 1 2 Age at marriage (std) Divorce rate (std) Idaho Maine
  37. Mixing Gaussians -6 -4 -2 0 2 4 6 0.0

    0.2 0.4 value density Student-t Gaussian
  38. m5.3 <- quap( alist( D ~ dnorm( mu , sigma

    ) , mu <- a + bM*M + bA*A , a ~ dnorm( 0 , 0.2 ) , bM ~ dnorm( 0 , 0.5 ) , bA ~ dnorm( 0 , 0.5 ) , sigma ~ dexp( 1 ) ) , data = dat ) m5.3t <- quap( alist( D ~ dstudent( 2 , mu , sigma ) , mu <- a + bM*M + bA*A , a ~ dnorm( 0 , 0.2 ) , bM ~ dnorm( 0 , 0.5 ) , bA ~ dnorm( 0 , 0.5 ) , sigma ~ dexp( 1 ) ) , data = dat )
  39. m5.3 <- quap( alist( D ~ dnorm( mu , sigma

    ) , mu <- a + bM*M + bA*A , a ~ dnorm( 0 , 0.2 ) , bM ~ dnorm( 0 , 0.5 ) , bA ~ dnorm( 0 , 0.5 ) , sigma ~ dexp( 1 ) ) , data = dat ) m5.3t <- quap( alist( D ~ dstudent( 2 , mu , sigma ) , mu <- a + bM*M + bA*A , a ~ dnorm( 0 , 0.2 ) , bM ~ dnorm( 0 , 0.5 ) , bA ~ dnorm( 0 , 0.5 ) , sigma ~ dexp( 1 ) ) , data = dat ) -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 bA (effect of age of marriage) Density Student-t model Gaussian model
  40. Robust Regressions Unobserved heterogeneity => mixture of Gaussians ick tails

    means model is less surprised by extreme values Usually impossible to estimate distribution of extreme values Student-t regression as default? -2 -1 0 1 2 3 -2 -1 0 1 2 Age at marriage (std) Divorce rate (std) Idaho Maine
  41. Problems of Prediction What is the next observation from the

    same process? (prediction) Possible to make very good predictions without knowing causes Optimizing prediction does not reliably reveal causes Powerful tools (PSIS, regularization) for measuring and managing accuracy 1 2 3 4 5 150 200 250 300 polynomial terms prediction error
  42. Course Schedule Week 1 Bayesian inference Chapters 1, 2, 3

    Week 2 Linear models & Causal Inference Chapter 4 Week 3 Causes, Confounds & Colliders Chapters 5 & 6 Week 4 Over tting / MCMC Chapters 7, 8, 9 Week 5 Generalized Linear Models Chapters 10, 11 Week 6 Integers & Other Monsters Chapters 11 & 12 Week 7 Multilevel models I Chapter 13 Week 8 Multilevel models II Chapter 14 Week 9 Measurement & Missingness Chapter 15 Week 10 Generalized Linear Madness Chapter 16 https://github.com/rmcelreath/stat_rethinking_2023