Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
67
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
74
Alice and the return to the world of pods and higher-order functions
roksolanad
0
180
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
290
Alice and travelling back in time
roksolanad
0
170
Big Data at AdTech
roksolanad
0
340
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
190
Alice in the world of machine learning
roksolanad
0
120
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
330
Scala meets Kubernetes
roksolanad
0
490
Other Decks in Technology
See All in Technology
ポストコロナ時代の SaaS におけるコスト削減の意義
izzii
1
460
SREのためのeBPF活用ステップアップガイド
egmc
2
1.2k
セキュアなAI活用のためのLiteLLMの可能性
tk3fftk
1
310
毎晩の 負荷試験自動実行による効果
recruitengineers
PRO
5
170
Copilot coding agentにベットしたいCTOが開発組織で取り組んだこと / GitHub Copilot coding agent in Team
tnir
0
170
ClaudeCodeにキレない技術
gtnao
1
840
Snowflake Intelligenceという名のAI Agentが切り開くデータ活用の未来とその実現に必要なこと@SnowVillage『Data Management #1 Summit 2025 Recap!!』
ryo_suzuki
1
150
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
18k
Rethinking Incident Response: Context-Aware AI in Practice
rrreeeyyy
1
880
Four Keysから始める信頼性の改善 - SRE NEXT 2025
ozakikota
0
400
AWS CDK 入門ガイド これだけは知っておきたいヒント集
anank
5
730
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
13k
Featured
See All Featured
A designer walks into a library…
pauljervisheath
207
24k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Site-Speed That Sticks
csswizardry
10
700
Agile that works and the tools we love
rasmusluckow
329
21k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Why Our Code Smells
bkeepers
PRO
337
57k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Typedesign – Prime Four
hannesfritz
42
2.7k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Docker and Python
trallard
45
3.5k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info