Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
69
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
76
Alice and the return to the world of pods and higher-order functions
roksolanad
0
190
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
290
Alice and travelling back in time
roksolanad
0
170
Big Data at AdTech
roksolanad
0
340
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
190
Alice in the world of machine learning
roksolanad
0
120
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
340
Scala meets Kubernetes
roksolanad
0
500
Other Decks in Technology
See All in Technology
Apache Spark もくもく会
taka_aki
1
170
低リスクで小学生男児を鍵っ子にする 俺の勉強会#4
inakaphper
0
110
測りにくい成果を測る — BtoB SaaSにおける効果検証への挑戦 / Shirokane Kougyou vol 20
sansan_randd
3
200
組織規模に応じたPlatform Engineeringの実践
hacomono
PRO
0
150
AIエージェントで90秒の広告動画を制作!台本・音声・映像・編集をつなぐAWS最新アーキテクチャの実践
nasuvitz
3
440
Rust In Python
lycorptech_jp
PRO
2
270
2025/09/16 仕様駆動開発とAI-DLCが導くAI駆動開発の新フェーズ
masahiro_okamura
0
210
CDK CLIで使ってたあの機能、CDK Toolkit Libraryではどうやるの?
smt7174
4
210
LLM時代のパフォーマンスチューニング:MongoDB運用で試したコンテキスト活用の工夫
ishikawa_pro
0
190
「完璧を目指さない」サーバーレス進化論 〜CDKで育てる変化に強いアーキテクチャ〜
yusukeshimizu
3
550
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
75k
SSG の限界を破る、再ビルド不要なサイト
reyalka
0
340
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
590
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Git: the NoSQL Database
bkeepers
PRO
431
66k
We Have a Design System, Now What?
morganepeng
53
7.8k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Being A Developer After 40
akosma
90
590k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
540
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info