Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
60
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
66
Alice and the return to the world of pods and higher-order functions
roksolanad
0
150
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
260
Alice and travelling back in time
roksolanad
0
130
Big Data at AdTech
roksolanad
0
270
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
130
Alice in the world of machine learning
roksolanad
0
87
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
290
Scala meets Kubernetes
roksolanad
0
450
Other Decks in Technology
See All in Technology
IaC運用を楽にするためにCDK Pipelinesを導入したけど、思い通りにいかなかった話
smt7174
1
110
プロダクトチームへのSystem Risk Records導入・運用事例の紹介/Introduction and Case Studies on Implementing and Operating System Risk Records for Product Teams
taddy_919
1
170
신뢰할 수 있는 AI 검색 엔진을 만들기 위한 Liner의 여정
huffon
0
360
GitHub Universe: Evaluating RAG apps in GitHub Actions
pamelafox
0
180
Fargateを使った研修の話
takesection
0
120
小規模に始めるデータメッシュとデータガバナンスの実践
kimujun
3
590
コンテンツを支える 若手ゲームクリエイターの アートディレクションの事例紹介 / cagamefi-game
cyberagentdevelopers
PRO
1
130
LeSSに潜む「隠れWF病」とその処方箋
lycorptech_jp
PRO
2
120
AWS CodePipelineでコンテナアプリをデプロイした際に、古いイメージを自動で削除する
smt7174
1
100
Apple/Google/Amazonの決済システムの違いを踏まえた定期購読課金システムの構築 / abema-billing-system
cyberagentdevelopers
PRO
1
220
【技術書典17】OpenFOAM(自宅で極める流体解析)2次元円柱まわりの流れ
kamakiri1225
0
220
AWSコンテナ本出版から3年経った今、もし改めて執筆し直すなら / If I revise our container book
iselegant
15
4k
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
79
8.6k
How STYLIGHT went responsive
nonsquared
95
5.2k
For a Future-Friendly Web
brad_frost
175
9.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
46
2.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
228
52k
Being A Developer After 40
akosma
86
590k
The Language of Interfaces
destraynor
154
24k
Six Lessons from altMBA
skipperchong
26
3.5k
Music & Morning Musume
bryan
46
6.1k
Rails Girls Zürich Keynote
gr2m
93
13k
Building Better People: How to give real-time feedback that sticks.
wjessup
363
19k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info