Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
78
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
96
Alice and the return to the world of pods and higher-order functions
roksolanad
0
190
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
300
Alice and travelling back in time
roksolanad
0
170
Big Data at AdTech
roksolanad
0
360
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
200
Alice in the world of machine learning
roksolanad
0
120
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
350
Scala meets Kubernetes
roksolanad
0
520
Other Decks in Technology
See All in Technology
ファインディにおけるフロントエンド技術選定の歴史
puku0x
0
220
田舎で20年スクラム(後編):一個人が企業で長期戦アジャイルに挑む意味
chinmo
1
1.2k
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
1
380
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
AI with TiDD
shiraji
1
340
Redshift認可、アップデートでどう変わった?
handy
1
130
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
740
First-Principles-of-Scrum
hiranabe
3
1.6k
20251225_たのしい出張報告&IgniteRecap!
ponponmikankan
0
110
わが10年の叡智をぶつけたカオスなクラウドインフラが、なくなるということ。
sogaoh
PRO
1
340
Node vs Deno vs Bun 〜推しランタイムを見つけよう〜
kamekyame
1
350
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
270
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Exploring anti-patterns in Rails
aemeredith
2
220
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
82
Designing for humans not robots
tammielis
254
26k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info