Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Productionizing Big Data - stories from the tre...
Search
Roksolana
September 14, 2023
Technology
0
69
Productionizing Big Data - stories from the trenches
Presented at ScalaDays 2023 (Madrid, Spain)
Roksolana
September 14, 2023
Tweet
Share
More Decks by Roksolana
See All by Roksolana
Pain of engineering management
roksolanad
1
76
Alice and the return to the world of pods and higher-order functions
roksolanad
0
190
Modern data pipelines in AdTech - life in the trenches
roksolanad
1
290
Alice and travelling back in time
roksolanad
0
170
Big Data at AdTech
roksolanad
0
340
Alice and the Mad Hatter: Predict or not to predict
roksolanad
0
190
Alice in the world of machine learning
roksolanad
0
120
Alice and the lost pod: practical guide to Kubernetes in Scala
roksolanad
1
340
Scala meets Kubernetes
roksolanad
0
500
Other Decks in Technology
See All in Technology
Escaping_the_Kraken_-_October_2025.pdf
mdalmijn
0
150
20201008_ファインディ_品質意識を育てる役目は人かAIか___2_.pdf
findy_eventslides
2
580
【Oracle Cloud ウェビナー】クラウド導入に「専用クラウド」という選択肢、Oracle AlloyとOCI Dedicated Region とは
oracle4engineer
PRO
3
120
The Cake Is a Lie... And So Is Your Login’s Accessibility
leichteckig
0
100
extension 現場で使えるXcodeショートカット一覧
ktombow
0
220
PLaMo2シリーズのvLLM実装 / PFN LLM セミナー
pfn
PRO
2
1.1k
Access-what? why and how, A11Y for All - Nordic.js 2025
gdomiciano
1
120
[Keynote] What do you need to know about DevEx in 2025
salaboy
0
140
防災デジタル分野での官民共創の取り組み (2)DIT/CCとD-CERTについて
ditccsugii
0
110
神回のメカニズムと再現方法/Mechanisms and Playbook for Kamikai scrumat2025
moriyuya
4
680
『OCI で学ぶクラウドネイティブ 実践 × 理論ガイド』 書籍概要
oracle4engineer
PRO
2
160
多様な事業ドメインのクリエイターへ 価値を届けるための営みについて
massyuu
1
490
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
Music & Morning Musume
bryan
46
6.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Become a Pro
speakerdeck
PRO
29
5.5k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Transcript
Productionizing big data - stories from the trenches
Roksolana Diachuk •Engineering manager at Captify •Women Who Code Kyiv
Data Engineering Lead •Speaker
AdTech methodologies deliver the right content at the right time
to the right consumer AdTech
None
You have your pipelines in production What’s next?
Types of issues • Low performance • Human errors •
Data source errors
Story #1. Unlucky query
Problem Drop 13 months of user profiles
Reporting
Problem 13 months hour=22042001
Loading mechanism loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P13M” val minTime = currentDay.minus(config.feedPeriod)
listFiles.filter(file => file.eventDateTime isAfter minTime)
Solution loader.ImpalaLoaderConfig.periodToLoad: “P5D” loader.ImpalaLoaderConfig.periodToLoad: “P1M” loader.ImpalaLoaderConfig.periodToLoad: “P13M” …
Story #2. Missing data
Data ingestion Data from Partner X Data costs attribution Extractor
Problem XX Advertiser ID, Language, XX Device Type, …, XX
Media Cost (USD) X Advertiser ID, Language, X Device Type, …, X Media Cost (USD)
Solution • Rename old columns • Reload data for the
week
Solution val colRegex: Regex = “””X (.+)“””.r val oldNewColumnsMapping =
df.schema.collect { case oldColdName@colRegex(pattern) => (oldColName.name, (“XX “ + pattern)) } oldNewColumnsMapping.foldLeft(df) { case (data, (oldName, newName)) => data.withColumnRenamed(oldName, newName) }
XX Advertiser ID, Language, XX Device Type, …, XX Media
Cost (USD) Solution
Story #3. Divide and conquer
Problem processing_time part-*.parquet filtering aggregations created part-*.parquet
• Slow processing • Large parquet files • Failing job
that consumes lots of resources Problem
• Write new partitioned state • Run downstream jobs with
smaller states • Generate seed partition column - xxhash64(fullUrl, domain) Solution
processing_time part-*.parquet created bucket=0 part-*.parquet part-*.parquet … bucket=9 part-*.parquet part-*.parquet
processing_time part-*.parquet Solution
Story #4. Catch the evolution train
Data organisation evolution
Problem • Missing columns from the source • Impala to
Databricks migration speed • Dependency with another team • Unhappy users
Log-level data Mapper Ingestor Transformer Data costs calculator Data costs
attribution
Data costs attribution Data costs attribution Data extractor Impala loader
Data costs attribution Data extractor Impala loader Data costs attribution
Solution XX Advertiser ID, Language, XX Device Type, …, XX
Partner Currency, XX CPM Fee (USD) XX Advertiser ID, Language, XX Device Type, …, XX Media Cost (USD) 26 columns 82 columns
Solution Data extractor New ingestion job
//final step is writing the data df.write .partitionBy(“event_date”, “event_hour”) .mode(SaveMode.Overwrite)
.parquet(dstPath) Solution
Why this solution doesn’t work data_feed clicks.csv.gz views.csv.gz activity.csv.gz event_date
clicks1.parquet clicks2.parquet
Impressions Clicks Conversions Attribution data source
Solution impressions clicks conversions clicks.csv.gz views.csv.gz activity.csv.gz
Story #5. Cleanup time
Corrupted data Data from Partner X Ingestor
Corrupted data Data from Partner X Ingestor IllegalArgumentException: Can't convert
value to BinaryType data type
Solution • Adjust pipeline • Reload data for 3 days
on S3 • Relaunch Databricks autoloader
Current solution impressions videoevents conversions impressions conversions Clicks clicks videoevents
Current solution impressions conversions clicks videoevents
Better solution impressions videoevents conversions impressions conversions clicks clicks videoevents
Conclusions
2. Observability is the key 4. Plan major changes carefully
1. Set up clear expectations with stakeholders Prevention mechanisms 3. Distribute data transformation load
2. Errors can be prevented 4. Data evolution is hard
1. Data setup is always changing Conclusions 3. There are multiple approaches with different tools
None
dead_ fl owers22 roksolana-d roksolanadiachuk roksolanad My contact info