Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Factorization Machines
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
roronya
October 19, 2016
Research
0
850
Factorization Machines
大学院の輪講ゼミで発表しました
roronya
October 19, 2016
Tweet
Share
More Decks by roronya
See All by roronya
速習 Spring AI Gemini CLIのようなLLM CLIを自作しよう
roronya
0
330
TeXの本懐
roronya
0
280
Other Decks in Research
See All in Research
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.1k
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
470
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
880
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
890
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
160
Remote sensing × Multi-modal meta survey
satai
4
710
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
260
Featured
See All Featured
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
130
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
63
Odyssey Design
rkendrick25
PRO
1
490
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Between Models and Reality
mayunak
1
180
Color Theory Basics | Prateek | Gurzu
gurzu
0
190
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
120
Transcript
Factorization Machines in Proceedings of the 10th IEEE International Conference
on Data Mining (ICDM 2010) @roronya
2 1. 概要 1. Factorization Machines(以下FMs) は SVM のように分類・回帰問題に利用できる一般的な予測モデル 2.
FMs は SVM が失敗するようなスパースなデータに対して有効に動作する 3. FMs は直接最適化できて、サポートベクトルが要らない (SVM は双対問題への変換が必要) 4. FMs は一般的な予測器でどんな実際の特徴ベクトルでも動作する (他の state-of-the-art な factorization モデルは 入力も学習アルゴリズムが特化しすぎている) FMs はその他の factorization モデルに擬態 (mimic) できる。 5. 最近コンペで優勝してる Field-aware Factorization Machines の元のモデル
3 Factorization Machines 1. 概要 2. Factorization Machines 1. 説明のためのデータについて
2. 定式化 3. スパースなデータでの学習 4. 計算量 5. 学習 3. SVM との比較 4. 他の Factorization モデルとの比較 5. まとめ
4 2. Factorization Machines 説明のためのデータについて 映画の推薦システムを考える。 user ∈ が映画 ∈
に時間 ∈ で評価 ∈ {1,2,3,4,5} をする。 ∈ { , , ℎ … } = { , , , } 観測データ = { , , 2010.1.5 , , , 2010.2.3 , , , 2010.4.1 , , , 2009.5.4 , , , 2009.8.5 , , 2009.9.1 , (, , 2009.12.5)}
5 2. Factorization Machines 定式化 ≔ 0 + =1 +
=1 =+1 < , > < , >≔ =1 , ∙ , 0 ∈ ℝ と ∈ ℝ と ∈ ℝ× を推定する ただし は の次元数 はハイパーパラメータ は の 番目の要素 目的変数への個々の影響とペアでの相互作用の影響を捉えるモデル ペアだけでなく d 個の組み合わせの相互作用にも拡張が可能 独立した w i,j として推論できるほどデータ無い Factorization モデルにすることで、 スパースなデータに対応している
6 2. Factorization Machines Alice(A) による Star Trek(ST) の評価 y
を推論したい 過去に (A, ST) の評価は無いので FMs で無ければ , = 0 FMs なら (B, SW) = 4、(C, SW) = 5 から v B と v C が類似 (A, SW) = 1、(C, SW) = 5 から v A と v C は相違 (B, SW) = 4, (B, ST) = 5 から v SW と v ST は類似 よって (A, ST) は (A, SW) = 1 に類似していそう 過去のデータからある程度推論可能 スパースなデータでの推論
7 2. Factorization Machines ≔ 0 + =1 + =1
=+1 < , > 単純にやれば 2 だけど () にできる =1 =+1 < , > = 1 2 =1 =1 < , > − 1 2 =1 < , > = 1 2 =1 =1 =1 , , − =1 =1 , , = 1 2 =1 =1 , =1 , − =1 , 2 2) = 1 2 =1 =1 , 2 − =1 , 2 2) 計算量
8 2. Factorization Machines SGD でパラメータが求まる 微分は以下。損失関数は自乗誤差でもロジットでもヒンジでも良いとのこと。 = 1, 0
, =1 , − , 2, , =1 , は と独立しているので計算しておくことで勾配は (1) ( 計算するときに計算しておく) 1データ(, ) につき () で全てのパラメータが更新される 学習
9 Factorization Machines 1. 概要 2. Factorization Machines 3. SVM
との比較 1. 線形カーネル 2. 多項式カーネル 3. その他話題とまとめ 4. 他の Factorization モデルとの比較 5. まとめ
10 3. SVM との比較 K ( , ) ≔ 1+
< , > = =1 (1 + ) = =1 + =1 = 0 + =1 FMs の相互作用項の無い式と同じ形 線形カーネル (FMs) ≔ 0 + =1 + =1 =+1 < , > = { 1 , 1 , … , , } のとき識別関数は = =1 ( )() = =1 ( , ) ただし は未定乗数
11 3. SVM との比較 特徴ベクトルの User の項と Movie の項だけ使って 線形カーネル
SVM で y を推定する = 0 + + 1 of K 表現なので 3 つの項からなる式になる 相互作用項が無い分、表現力が落ちてる。 線形カーネル
12 3. SVM との比較 K ( , ) ≔ (1+
< , >) = 2 のとき ≔ (1, 21 , … , 2 , 1 2 … , 2, 21 2 , … , 21 , 22 3 , … , 2−1 ) = 0 + 2 =1 + =1 , 2 + 2 =1 =+1 , FMs の< , >を独立した, としている 多項式カーネル (FMs) ≔ 0 + =1 + =1 =+1 < , > (SVM) = =1 ( )() = =1 ( , )
13 3. SVM との比較 Alice(A) による Star Trek(ST) の評価 y
を推論したい 過去に (A, ST) の評価は無いので 多項式カーネル SVM では , = 0 FMs なら (B, SW) = 4、(C, SW) = 5 から v B と v C が類似 (A, SW) = 1、(C, SW) = 5 から v A と v C は相違 (B, SW) = 4, (B, ST) = 5 から v SW と v ST は類似 よって (A, ST) は (A, SW) = 1 に類似していそう 過去のデータからある程度推論可能 多項式カーネル 特徴ベクトルの User の項と Movie の項だけ使って 多項式カーネル SVM で y を推定する = 0 + 2 + + , + , + 2,
14 3. SVM との比較 1) FMs の方がスパースなデータに対して良く推定できる 2) FMs は主問題を直接最適化できる
SVM は双対問題に変換が要るけどそれによって起こるデメリットが よくわからない… 3) サポートベクトル無しでパラメータが推定出来る その他話題とまとめ
15 Factorization Machines 1. 概要 2. Factorization Machines 3. SVM
との比較 4. 他の Factorization モデルとの比較 1. Matrix Factorization 2. SVD++ 3. PITF 4. FPMC 5. まとめ
16 4. 他の Factorization モデルとの比較 FMs は他の Factorization モデルに 擬態できる
Matrix Factorization ユーザのアイテムへの評価は ユーザとアイテムの潜在的特徴量の 内積で計算できる 右上の特徴ベクトルの User とMovie と使っていて、FMs で書くと ≔ ∪ , ≔ ( = ∪ = ) = 0 + + +< , > 5 1 4 4 3 3 5 1 3 5 1 4 item user U V
17 4. 他の Factorization モデルとの比較 SVD++ Matrix Factorization の改良モデル 今見たアイテムと
その直前に見たアイテムとの 相互作用を考慮している 右上の特徴ベクトルの User とMovie と Last Movie rated を使っていて、 FMs で書くと ≔ ∪ ∪ , : = 1, = ∪ = 1 , ∈ 0, ただし は評価済みのアイテムの集合 = 0 + + +< , > + 1 ∈ < , > + 1 +< , > + 1 ′∈,′> < , ′ > 本来の SVD++ は ここまで FMs だと その他の相互作用も 考慮することになる
18 4. 他の Factorization モデルとの比較 PITF for Tag Recommendation PITF
= Pairwise Interaction Tensor Factorization) ユーザがアイテムにタグをつけるときに良さそうなタグを推薦したい ECML/PKDD Discovery Challenge で優勝した手法 1 of K されたユーザーとアイテムとタグを特徴ベクトルとする FMs で書くと ≔ ∪ ∪ , : = ( = ∪ = ∪ = ) = 0 + + + +< , >+< , >+< , > PITF のオリジナルモデルだと 1) が無かった 2) < , >+< , >が, + , だった (Factorization してなかった) 右はコンペティションのデータで FMs が PITF と同じくらいスコアが出ている という図
19 4. 他の Factorization モデルとの比較 FPMC =Factorized Personalized markov Chains
1 okf K 表現されたUser とMovie と Last Movie rated を特徴ベクトルとする FMs で書くと ≔ ∪ ∪ , : = 1, = ∪ = 1 |−1 | , ∈ −1 0, ただし ⊆ は時刻 でユーザー が買ったアイテムの集合 = 0 + + +< , > + 1 |−1 | ∈−1 < , > + 1 |−1 | +< , > + 1 |−1 | ′∈−1 ,′> < , ′ > SVD++ は今まで買ったアイテムを 1 としていた FPMCは直前に買ったアイテムの集合を 1 |−1 | としている
20 5. まとめ • Factorization Machines を紹介した • SVM と比較して
スパースなデータに置ける優位を示した • 他の state-of-the-art な Factorization モデルの 汎化モデルであることを示した • 次に読むならこれ Field-aware Factorization Machines http://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf
補足
22 2. Factorization Machines FMs の表現力 が十分に大きければ = ∙ が正定値行列となることが知られている。
だから FMs は が十分に大きければどんな相互作用も表現できる。 しかし、 を大きくするとモデルの複雑性が大きくなるので ほどほどの を選択する。
23 2. Factorization Machines d-way Factorization Machines ≔ 0 +
=1 + =2 1=1 ∙∙∙ =−1+1 =1 =1 =1 ,