Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Lin Jiu

S³ Seminar
December 09, 2016

Lin Jiu

(RISC, Linz)

https://s3-seminar.github.io/seminars/lin-jiu

Title — The method of brackets (MOB) and integrating by differentiating (IBD)

Abstract — We introduce two methods of symbolic integration for definite integrals: the method of brackets, based on the Ramanujan’s master theorem; and integrating by differentiating method, from the Fourier transform of Dirac delta function. Besides some basic examples and latest results of both methods, respectively, a formal connection between these methods will be presented in the end.

S³ Seminar

December 09, 2016
Tweet

More Decks by S³ Seminar

Other Decks in Research

Transcript

  1. The method of brackets (MoB) Integration by Differentiating The Method

    of Brackets (MoB) and Integrating by Differentiating (IbD) Method Lin Jiu Research Institute for Symbolic Computation Johannes Kepler University Dec. 9th 2016 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  2. The method of brackets (MoB) Integration by Differentiating Acknowledgement Joint

    Work with: V. H. Moll K. Kohl I. Gonzalez C. Vignat Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  3. The method of brackets (MoB) Integration by Differentiating Outlines 1

    The method of brackets (MoB) Rules Ramanujan’s Master Theorem (RMT) Examples Recent result 2 Integration by Differentiating Formulas Recent proofs Connection Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  4. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  5. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  6. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  7. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  8. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Idea MoB evaluates the definite integral ∞ 0 f (x) dx (most of the time) in terms of SERIES, with ONLY SIX rules: Defintion [Indicator] φn := (−1)n n! = (−1)n Γ (n + 1) and φ1,...,r := φn1,...,nr = φn1 φn2 · · · φnr = r i=1 φni . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  9. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules (P-Production; E-Evaluation) I = ∞ 0 f (x) dx P1: f (x) = ∞ n=0 anxαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β Bracket Series; P2: For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3: For each bracket series, we assign index=# of sums− # of brackets; E1: n φnf (n) αn + β = 1 |α| f (n∗) Γ (−n∗), where n∗ solves αn + β = 0; E2: n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1n1 + · · · + air nr + ci = f (n∗ 1 ,...,n∗ r ) r i=1 Γ(−n∗ i ) |det A| , (n∗ 1 , . . . , n∗ r ) solves    a11n1 + · · · + a1r nr + c1 = 0 . . . · · · ar1n1 + · · · + arr nr + cr = 0 ; E3: The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  10. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0<x<e−P ==== ∞ k=0 ψ (k) (−x)k ; ∞ 0 Ψ (x) xs−1dx = π sin (πs) ψ (−s) . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  11. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0<x<e−P ==== ∞ k=0 ψ (k) (−x)k ; ∞ 0 Ψ (x) xs−1dx = π sin (πs) ψ (−s) . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  12. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0<x<e−P ==== ∞ k=0 ψ (k) (−x)k ; ∞ 0 Ψ (x) xs−1dx = π sin (πs) ψ (−s) . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  13. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0<x<e−P ==== ∞ k=0 ψ (k) (−x)k ; ∞ 0 Ψ (x) xs−1dx = π sin (πs) ψ (−s) . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  14. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Ramanujan’s Master Theorem[RMT] Theorem[RMT] ∞ 0 xs−1 a (0) − a (1) 1! x + a (2) 2! x2 − · · · dx = a (−s) Γ (s) (1) ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (2) [Hardy] •H (δ) := {s = σ + ιt : σ ≥ −δ, 0 < δ < 1}; •ψ (x) ∈ C∞ (H (δ)); ∃C, P, A, A < π such that |ψ (s)| ≤ CePδ+A|t|, ∀s ∈ H (δ); •0 < c < δ, Ψ (x) := 1 2πι c+ι∞ c−ι∞ π sin(πs) ψ (−s) x−s dx 0<x<e−P ==== ∞ k=0 ψ (k) (−x)k ; ∞ 0 Ψ (x) xs−1dx = π sin (πs) ψ (−s) . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  15. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  16. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  17. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  18. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 : For α < 0,(a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| ,, n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  19. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φn a (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  20. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  21. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  22. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  23. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  24. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  25. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  26. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again Theorem[RMT] ∞ 0 xs−1 ∞ n=0 φna (n) xn dx = a (−s) Γ (s) (1) Integrand→Power Series; (2) Keep Track of s; (3) Apply the Formula; (4) Multiple Integrals; ∞ 0 ∞ 0 n,m a (m, n) xmyndxdy =? (5) More Sums than Integrals (brackets); ∞ 0 f1 (x) f2 (x) dx = ∞ 0 m,n a (m, n) xm+ndx = m,n a (m, n) m + n + 1 =? (6) Extra. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  27. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rules Again P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx → n an αn + β s − 1 → s P2 :For α < 0, (a1 + · · · + ar )α → n1,...,nr φ1,...,r an1 1 · · · anr r −α+n1+···+nr Γ(−α) ; P3 : Index=# of sums− # of brackets; Just a definition E1 : n φn f (n) αn + β = f (n∗)Γ(−n∗) |α| , n∗ solves αn + β = 0; RMT E2 : Iteration of RMT n1,...,nr φ1,...,r f (n1, . . . , nr ) r i=1 ai1 n1 + · · · + air nr + ci = f (n∗ 1 , . . . , n∗ r ) r i=1 Γ (−n∗ i ) |det A| E3 : The value of a multi-dimensional bracket series of POSITIVE index is obtained by computing all the contributions of maximal rank by Rule E2. These contributions to the integral appear as series in the free parameters. Series converging in a common region are added and divergent series are discarded. Any series producing a non-real contribution is also discarded. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  28. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Rule P2 Γ (−α) (a1 + · · · + ar )−α . = ∞ 0 x−α−1e−(a1+···+ar )x dx = ∞ 0 x−α−1e−a1x e−a2x · · · e−ar x dx = ∞ 0 x−α−1 r i=1   ∞ ni =0 φni (ax)ni   dx = ∞ 0 n1,...,nr φ1,...,r an1 1 · · · anr r xn1+···+nr −α−1dx = n1,...,nr φ1,...,r an1 1 · · · anr r −α + n1 + · · · + nr Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  29. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  30. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  31. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  32. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  33. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay [y > 0 Re(a) > 0] Rule P2 : 1 √ a2 + x2 = a2 + x2 − 1 2 = n1,n2 φ1,2 a2n1 x2n2 1 2 + n1 + n2 Γ 1 2 J0 (xy) J0 (xy) = n3 φn3 y2n3 Γ (n3 + 1) 22n3 x2n3 Rule P1 I = ∞ 0 n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 x2n2+2n3+1dx = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  34. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  35. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  36. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  37. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  38. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  39. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  40. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  41. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  42. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Examples I := ∞ 0 xJ0(xy) dx √ a2 + x2 = y−1e−ay I = n1,n2,n3 φ1,2,3 y2n3 a2n1 Γ (n3 + 1) Γ 1 2 22n3 n1 + n2 + 1 2 2n2 + 2n3 + 2 ; n1 free: n∗ 2 = − 1 2 − n1; n∗ 3 = − 1 2 + n1; det = 2: I = 1 2 n1 φn1 y2n1−1a2n1 Γ n1 + 1 2 Γ 1 2 22n1−1 Γ n1 + 1 2 Γ −n1 + 1 2 = 1 y ∞ n1=0 φn1 ay 2 2n1 Γ 1 2 − n1 Γ 1 2 = 1 y cosh (ay) ; n2 free : I = 1 √ πy ∞ n2=0 Γ n2+ 1 2 Γ(−n2) 2 ay 2n2+1 = 0; n3 free : I = Series = − sinh(ay) y ; E3 : I = 1 y cosh (ay) − sinh (ay) y = y−1e−ay . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  43. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (I) Usual method: By the n-dim spherical coordinate that r = x2 1 + · · · + x2 m and                  x1 = r cos (φ1 ) , 0 ≤ φ1 ≤ π, x2 = r sin (φ2 ) cos (φ2 ) , 0 ≤ φ2 ≤ π, · · · · · · xn−2 = r sin (φ1 ) · · · sin (φm−3 ) cos (φm−2 ) , 0 ≤ φm−2 ≤ π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) cos (φm−1 ) , 0 ≤ φm−1 ≤ 2π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) sin (φm−1 ) , 0 ≤ r < ∞, we have dx1 · · · dxm = rm−1 sinm−2 (φ1 ) · · · sin (φm−2 ) drdφ1 · · · dφm−1. Thus, I = 2π m 2 ∞ 0 rm−1f r2 dr 1 Γ m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  44. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (I) Usual method: By the n-dim spherical coordinate that r = x2 1 + · · · + x2 m and                  x1 = r cos (φ1 ) , 0 ≤ φ1 ≤ π, x2 = r sin (φ2 ) cos (φ2 ) , 0 ≤ φ2 ≤ π, · · · · · · xn−2 = r sin (φ1 ) · · · sin (φm−3 ) cos (φm−2 ) , 0 ≤ φm−2 ≤ π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) cos (φm−1 ) , 0 ≤ φm−1 ≤ 2π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) sin (φm−1 ) , 0 ≤ r < ∞, we have dx1 · · · dxm = rm−1 sinm−2 (φ1 ) · · · sin (φm−2 ) drdφ1 · · · dφm−1. Thus, I = 2π m 2 ∞ 0 rm−1f r2 dr 1 Γ m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  45. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (I) Usual method: By the n-dim spherical coordinate that r = x2 1 + · · · + x2 m and                  x1 = r cos (φ1 ) , 0 ≤ φ1 ≤ π, x2 = r sin (φ2 ) cos (φ2 ) , 0 ≤ φ2 ≤ π, · · · · · · xn−2 = r sin (φ1 ) · · · sin (φm−3 ) cos (φm−2 ) , 0 ≤ φm−2 ≤ π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) cos (φm−1 ) , 0 ≤ φm−1 ≤ 2π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) sin (φm−1 ) , 0 ≤ r < ∞, we have dx1 · · · dxm = rm−1 sinm−2 (φ1 ) · · · sin (φm−2 ) drdφ1 · · · dφm−1. Thus, I = 2π m 2 ∞ 0 rm−1f r2 dr 1 Γ m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  46. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (I) Usual method: By the n-dim spherical coordinate that r = x2 1 + · · · + x2 m and                  x1 = r cos (φ1 ) , 0 ≤ φ1 ≤ π, x2 = r sin (φ2 ) cos (φ2 ) , 0 ≤ φ2 ≤ π, · · · · · · xn−2 = r sin (φ1 ) · · · sin (φm−3 ) cos (φm−2 ) , 0 ≤ φm−2 ≤ π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) cos (φm−1 ) , 0 ≤ φm−1 ≤ 2π, xn−1 = r sin (φ1 ) · · · sin (φm−2 ) sin (φm−1 ) , 0 ≤ r < ∞, we have dx1 · · · dxm = rm−1 sinm−2 (φ1 ) · · · sin (φm−2 ) drdφ1 · · · dφm−1. Thus, I = 2π m 2 ∞ 0 rm−1f r2 dr 1 Γ m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  47. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (II) The method of brackets: Suppose f (t) = ∞ l=0 φl a (l) tl , then, ∞ 0 rm−1f r2 dr = l φl a (l) 2l + m = l φl a (l) 2l + m = 1 2 a − m 2 Γ m 2 . So it suffices to show that I = 2π m 2 1 2 a − m 2 Γ −m 2 + 1 (−1)− m 2 Γ m 2 1 Γ m 2 = π m 2 a − m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  48. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim I = Rm f x2 1 + · · · + x2 m dx1 · · · dxm (II) The method of brackets: Suppose f (t) = ∞ l=0 φl a (l) tl , then, ∞ 0 rm−1f r2 dr = l φl a (l) 2l + m = l φl a (l) 2l + m = 1 2 a − m 2 Γ m 2 . So it suffices to show that I = 2π m 2 1 2 a − m 2 Γ −m 2 + 1 (−1)− m 2 Γ m 2 1 Γ m 2 = π m 2 a − m 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  49. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim Direct computation shows: I = 2m Rm + ∞ l=0 φl a (l) x2 1 + · · · + x2 m l dx1 · · · dxm = 2m Rm + ∞ l=0 φl a (l) n1,...,nm n1+···+nm=l l n1, · · · , nm x2n1 1 · · · x2nm m dx1 · · · dxm = 2m l=n1+···+nm φl a (l) n1,...,nm φ1,...,m l n1, · · · , nm 1 φ1,...,m m j=1 2nj + 1 = AC... = π m 2 a − m 2 , as desired. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  50. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim Direct computation shows: I = 2m Rm + ∞ l=0 φl a (l) x2 1 + · · · + x2 m l dx1 · · · dxm = 2m Rm + ∞ l=0 φl a (l) n1,...,nm n1+···+nm=l l n1, · · · , nm x2n1 1 · · · x2nm m dx1 · · · dxm = 2m l=n1+···+nm φl a (l) n1,...,nm φ1,...,m l n1, · · · , nm 1 φ1,...,m m j=1 2nj + 1 = AC... = π m 2 a − m 2 , as desired. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  51. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim Direct computation shows: I = 2m Rm + ∞ l=0 φl a (l) x2 1 + · · · + x2 m l dx1 · · · dxm = 2m Rm + ∞ l=0 φl a (l) n1,...,nm n1+···+nm=l l n1, · · · , nm x2n1 1 · · · x2nm m dx1 · · · dxm = 2m l=n1+···+nm φl a (l) n1,...,nm φ1,...,m l n1, · · · , nm 1 φ1,...,m m j=1 2nj + 1 = AC... = π m 2 a − m 2 , as desired. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  52. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim I = Rm + xp1−1 1 · · · xpm−1 m dx1 · · · dxm (r0 + r1 x1 + · · · + rm xm )s = Γ (p1 ) · · · Γ (pm ) Γ (s − p1 − p2 − · · · − pn ) rp1 1 · · · rpm m rs−p1−···−pm 0 Γ (s) . (r0 + r1x1 + · · · + rmxm)−s = n0,n1,...,nm φ0,1,...,mrn0 0 rn1 1 xn1 1 · · · rnm m xnm m s + n0 + · · · + nm Γ (s) I = 1 Γ (s) n0,n1,...,nm φ0,1,...,mrn0 0 · · · rnm m s + n0 + · · · + nm m j=1 nm + pm .   1 1 1 · · · 1 0 1 0 · · · 0 · · · · · · · · · · · · · · · 0 0 0 0 1     n0 n1 · · · nm   +   s p1 · · · pm   =     0 0 0 · · · 0     , det A = 1, n∗ j = −pj , ∀j = 1, . . . , m and n∗ 0 = p1 + · · · + pm − s. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  53. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Multi-dim I = Rm + xp1−1 1 · · · xpm−1 m dx1 · · · dxm (r0 + r1 x1 + · · · + rm xm )s = Γ (p1 ) · · · Γ (pm ) Γ (s − p1 − p2 − · · · − pn ) rp1 1 · · · rpm m rs−p1−···−pm 0 Γ (s) . (r0 + r1x1 + · · · + rmxm)−s = n0,n1,...,nm φ0,1,...,mrn0 0 rn1 1 xn1 1 · · · rnm m xnm m s + n0 + · · · + nm Γ (s) I = 1 Γ (s) n0,n1,...,nm φ0,1,...,mrn0 0 · · · rnm m s + n0 + · · · + nm m j=1 nm + pm .   1 1 1 · · · 1 0 1 0 · · · 0 · · · · · · · · · · · · · · · 0 0 0 0 1     n0 n1 · · · nm   +   s p1 · · · pm   =     0 0 0 · · · 0     , det A = 1, n∗ j = −pj , ∀j = 1, . . . , m and n∗ 0 = p1 + · · · + pm − s. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  54. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Null/Divergent Series K0 (x) = ∞ 0 cos(tx)dt √ 1+t2 . K0 (x) = 1 2 n φnΓ (−n) x2n 4n and K0 (x) = n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 M (K0) (s) = ∞ 0 xs−1K0 (x) dx = 2s−2Γ s 2 2 ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 dx = n φn Γ n + 1 2 2 4n Γ (−n) s − 2n − 1 = 2s−2Γ s 2 2 , ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 2 n φnΓ (−n) x2n 4n dx = 1 2 n φn Γ (−n) 4n 2n + s = 2s−2Γ s 2 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  55. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Null/Divergent Series K0 (x) = ∞ 0 cos(tx)dt √ 1+t2 . K0 (x) = 1 2 n φnΓ (−n) x2n 4n and K0 (x) = n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 M (K0) (s) = ∞ 0 xs−1K0 (x) dx = 2s−2Γ s 2 2 ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 dx = n φn Γ n + 1 2 2 4n Γ (−n) s − 2n − 1 = 2s−2Γ s 2 2 , ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 2 n φnΓ (−n) x2n 4n dx = 1 2 n φn Γ (−n) 4n 2n + s = 2s−2Γ s 2 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  56. The method of brackets (MoB) Integration by Differentiating Rules Ramanujan’s

    Master Theorem (RMT) Examples Recent result Null/Divergent Series K0 (x) = ∞ 0 cos(tx)dt √ 1+t2 . K0 (x) = 1 2 n φnΓ (−n) x2n 4n and K0 (x) = n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 M (K0) (s) = ∞ 0 xs−1K0 (x) dx = 2s−2Γ s 2 2 ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 n φn Γ n + 1 2 2 Γ (−n) · 4n x2n+1 dx = n φn Γ n + 1 2 2 4n Γ (−n) s − 2n − 1 = 2s−2Γ s 2 2 , ∞ 0 xs−1K0 (x) dx = ∞ 0 xs−1 2 n φnΓ (−n) x2n 4n dx = 1 2 n φn Γ (−n) 4n 2n + s = 2s−2Γ s 2 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  57. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection DEF A. Kempf et al. study Dirac-delta function to obtain the following formulas: b a f (x) dx = lim ε→0 f (∂ε) eεb − eεa ε , ∞ −∞ f (x) dx = lim ε→0 2πf (−ι∂ε) δ (ε) = 2πδ (ι∂ε) f (ε) , ∞ 0 f (x) dx = lim ε→0 f (−∂ε) 1 ε , 0 −∞ f (x) dx = lim ε→0 f (∂ε) 1 ε , ∞ −∞ f (x) dx = lim ε→0 [f (−∂ε) + f (∂ε)] 1 ε , where ∂ε denotes the derivative with respect to ε. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  58. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection DEF A. Kempf et al. study Dirac-delta function to obtain the following formulas: b a f (x) dx = lim ε→0 f (∂ε) eεb − eεa ε , ∞ −∞ f (x) dx = lim ε→0 2πf (−ι∂ε) δ (ε) = 2πδ (ι∂ε) f (ε) , ∞ 0 f (x) dx = lim ε→0 f (−∂ε) 1 ε , 0 −∞ f (x) dx = lim ε→0 f (∂ε) 1 ε , ∞ −∞ f (x) dx = lim ε→0 [f (−∂ε) + f (∂ε)] 1 ε , where ∂ε denotes the derivative with respect to ε. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  59. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  60. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  61. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  62. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  63. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  64. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  65. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Example I = ∞ 0 sin x x dx = π 2 f (x) = 1 x · 1 2ι eιx − e−ιx I = lim ε→0 f (−∂ε ) 1 ε = 1 2ι lim ε→0 e−ι∂ε − eι∂ε 1 ∂ε ◦ 1 . Note that 1/∂ε is the inverse operation of derivative, i.e., integration. I = 1 2ι lim ε→0 e−ι∂ε − eι∂ε ◦ (ln ε + c) Recall that for the derivative operator ∂ε , so that ea∂ε ◦ f (ε) = f (ε + a) . I = 1 2ι lim ε→0 [(ln (ε − ι) + c) − (ln (ε + ι) + c)] = 1 2ι lim ε→0 [ln (ε − ι) − ln (ε + ι)] = 1 2ι −ιπ 2 − ιπ 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  66. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Remark I = ∞ 0 1 x n φn Γ (n + 1) Γ (2n + 2) x2n+1dx = n φn Γ (n + 1) Γ (2n + 2) 2n + 1 = 1 2 · Γ −1 2 + 1 Γ 2 −1 2 + 2 Γ 1 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  67. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Remark I = ∞ 0 1 x n φn Γ (n + 1) Γ (2n + 2) x2n+1dx = n φn Γ (n + 1) Γ (2n + 2) 2n + 1 = 1 2 · Γ −1 2 + 1 Γ 2 −1 2 + 2 Γ 1 2 = π 2 . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  68. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  69. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  70. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  71. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  72. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Proofs D. Jia , E. Tang, A. Kempf, “present a list of propositions that put the above integration by differentiation methods on a rigorous footing.” ∞ 0 f (x) e−xy dx = lim a→∞ f (−∂y ) 1 − e−ay y , provided that f : R → R is entire and Laplace transformable on R+. Formal/Key idea: ∞ 0 f (x) e−xy dx = ∞ 0 ∞ n=0 cnxne−xy dx = ∞ n=0 cn lim a→∞ a 0 xne−xy dx = ∞ n=0 cn lim a→∞ a 0 (−∂y )n e−xy dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  73. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Formal Connection f (x) = ∞ n=0 anxαn+β−1 ⇒ ∞ 0 f (x) dx = lim ε→0 ∞ 0 e−εx f (x) dx. lim ε→0 ∞ 0 e−εx f (x) dx = lim ε→0 ∞ 0 e−εx ∞ n=0 anxαn+β−1 dx = lim ε→0 ∞ n=0 an ∞ 0 e−εx xαn+β−1dx = lim ε→0 ∞ n=0 an ∞ 0 (−∂ε)αn+β−1 ◦ e−εx dx = lim ε→0 ∞ n=0 an (−∂ε)αn+β−1 ◦ ∞ 0 e−εx dx = lim ε→0 f (−∂ε) ◦ 1 ε . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  74. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Formal Connection f (x) = ∞ n=0 anxαn+β−1 ⇒ ∞ 0 f (x) dx = lim ε→0 ∞ 0 e−εx f (x) dx. lim ε→0 ∞ 0 e−εx f (x) dx = lim ε→0 ∞ 0 e−εx ∞ n=0 anxαn+β−1 dx = lim ε→0 ∞ n=0 an ∞ 0 e−εx xαn+β−1dx = lim ε→0 ∞ n=0 an ∞ 0 (−∂ε)αn+β−1 ◦ e−εx dx = lim ε→0 ∞ n=0 an (−∂ε)αn+β−1 ◦ ∞ 0 e−εx dx = lim ε→0 f (−∂ε) ◦ 1 ε . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  75. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Formal Connection f (x) = ∞ n=0 anxαn+β−1 ⇒ ∞ 0 f (x) dx = lim ε→0 ∞ 0 e−εx f (x) dx. lim ε→0 ∞ 0 e−εx f (x) dx = lim ε→0 ∞ 0 e−εx ∞ n=0 anxαn+β−1 dx = lim ε→0 ∞ n=0 an ∞ 0 e−εx xαn+β−1dx = lim ε→0 ∞ n=0 an ∞ 0 (−∂ε)αn+β−1 ◦ e−εx dx = lim ε→0 ∞ n=0 an (−∂ε)αn+β−1 ◦ ∞ 0 e−εx dx = lim ε→0 f (−∂ε) ◦ 1 ε . Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  76. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Formal Connection Recall P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx = n an αn + β . Formally, a := ∞ 0 xa−1dx. and a ε := ∞ 0 xa−1e−εx dx ⇒ lim ε→0 a ε = a . Therefore n an αn + β = lim ε→0 n an αn + β ε = lim ε→0 n an ∞ 0 xαn+β−1e−εx dx = lim ε→0 ∞ 0 e−εx f (x) dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  77. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Formal Connection Recall P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx = n an αn + β . Formally, a := ∞ 0 xa−1dx. and a ε := ∞ 0 xa−1e−εx dx ⇒ lim ε→0 a ε = a . Therefore n an αn + β = lim ε→0 n an αn + β ε = lim ε→0 n an ∞ 0 xαn+β−1e−εx dx = lim ε→0 ∞ 0 e−εx f (x) dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  78. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Formal Connection Recall P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx = n an αn + β . Formally, a := ∞ 0 xa−1dx. and a ε := ∞ 0 xa−1e−εx dx ⇒ lim ε→0 a ε = a . Therefore n an αn + β = lim ε→0 n an αn + β ε = lim ε→0 n an ∞ 0 xαn+β−1e−εx dx = lim ε→0 ∞ 0 e−εx f (x) dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  79. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Formal Connection Recall P1 : f (x) = ∞ n=0 an xαn+β−1 ⇒ ∞ 0 f (x) dx = n an αn + β . Formally, a := ∞ 0 xa−1dx. and a ε := ∞ 0 xa−1e−εx dx ⇒ lim ε→0 a ε = a . Therefore n an αn + β = lim ε→0 n an αn + β ε = lim ε→0 n an ∞ 0 xαn+β−1e−εx dx = lim ε→0 ∞ 0 e−εx f (x) dx. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  80. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  81. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  82. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  83. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  84. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection Possible Future Work Connect MoB to IbD, and provide rigorous proofs of the former. Ramanujan’s Master Theorem. Extension to other intervals. etc. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  85. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection References B. C. Berndt, Ramanujan’s Notebooks Part I, Springer-Verlag, 1991. K. Boyadzhiev, V. H. Moll. The integrals in Gradshteyn and Ryzhik. Part 21: hyperbolic functions. Scientia. 22 (2013), 109–127, 2013. I. Gonzalez, K. Kohl, and V. H. Moll. Evaluation of entries in Gradshteyn and Ryzhik employing the method of brackets. Scientia, 25 (2014), 65–84. I. Gonzalez and V. H. Moll. Definite integrals by the method of brackets. Part 1. Adv. Appl. Math., 45 (2010), 50–73. I. Gonzalez and I. Schmidt. Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation. Nuclear Phys. B, 769 (2017), 124–173. I. Gonzalez and I. Schmidt. Modular application of an integration by fractional expansion (IBFE) method to multiloop Feynman diagrams. Phys. Rev. D, 78 (2008), 086003. I. G. Halliday and R. M. Ricotta. Negative dimensional integrals. I. Feynman graphs. Phys. Lett. B, 193 (1987), 241–246. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products, Academic Press, 2015. G. H. Hardy. Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work. Chelsea Publishing Company, 1987. K. Kohl. Algorithmic Methods for Definite Integration. PhD thesis, Tulane University, 2011. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  86. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection References B. C. Berndt, Ramanujan’s Notebooks Part I, Springer-Verlag, 1991. K. Boyadzhiev, V. H. Moll. The integrals in Gradshteyn and Ryzhik. Part 21: hyperbolic functions. Scientia. 22 (2013), 109–127, 2013. I. Gonzalez, K. Kohl, and V. H. Moll. Evaluation of entries in Gradshteyn and Ryzhik employing the method of brackets. Scientia, 25 (2014), 65–84. I. Gonzalez and V. H. Moll. Definite integrals by the method of brackets. Part 1. Adv. Appl. Math., 45 (2010), 50–73. I. Gonzalez and I. Schmidt. Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation. Nuclear Phys. B, 769 (2017), 124–173. I. Gonzalez and I. Schmidt. Modular application of an integration by fractional expansion (IBFE) method to multiloop Feynman diagrams. Phys. Rev. D, 78 (2008), 086003. I. G. Halliday and R. M. Ricotta. Negative dimensional integrals. I. Feynman graphs. Phys. Lett. B, 193 (1987), 241–246. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products, Academic Press, 2015. G. H. Hardy. Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work. Chelsea Publishing Company, 1987. K. Kohl. Algorithmic Methods for Definite Integration. PhD thesis, Tulane University, 2011. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  87. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection References A. Kempf, D. M. Jackson, and A. H. Morales, New Dirac Delta Function Based Methods with Applications to Perturbative Expansions in Quantum Field Theory, Journal of Physics A: Mathematical and Theoretical 47 (41): 415-204, 2014 A. Kempf, D. M. Jackson, and A. H. Morales, How to (Path-) Integrate by Differentiating, preprint, arXiv:math/1507.04348, 2015. D. Jia, E. Tang and A. Kempf, Integration by differentiation: new proofs, methods and examples, preprint, https://arxiv.org/abs/1610.09702, 2016. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  88. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection References A. Kempf, D. M. Jackson, and A. H. Morales, New Dirac Delta Function Based Methods with Applications to Perturbative Expansions in Quantum Field Theory, Journal of Physics A: Mathematical and Theoretical 47 (41): 415-204, 2014 A. Kempf, D. M. Jackson, and A. H. Morales, How to (Path-) Integrate by Differentiating, preprint, arXiv:math/1507.04348, 2015. D. Jia, E. Tang and A. Kempf, Integration by differentiation: new proofs, methods and examples, preprint, https://arxiv.org/abs/1610.09702, 2016. Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin
  89. The method of brackets (MoB) Integration by Differentiating Formulas Recent

    proofs Connection End Thank you! Lin Jiu The Method of Brackets (MoB) and Integrating by Differentiatin