Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
やきう選手の撮れ高(打者編) #kwskrb 2019/2/27 LT資料
Search
Shinichi Nakagawa
PRO
February 27, 2019
Research
0
370
やきう選手の撮れ高(打者編) #kwskrb 2019/2/27 LT資料
kawasaki.rb #69 LTの資料に色々と足したり引いたりしたもの
Shinichi Nakagawa
PRO
February 27, 2019
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
2.2k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
3.5k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
82
80k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.3k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
2.8k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
480
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
PRO
5
12k
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become a ML Engineer
shinyorke
PRO
10
17k
Other Decks in Research
See All in Research
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
460
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
190
サーブレシーブ成功率は勝敗に影響するか?
vball_panda
0
540
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
520
Poster: Feasibility of Runtime-Neutral Wasm Instrumentation for Edge-Cloud Workload Handover
chikuwait
0
350
Elix, CBI2024, スポンサードセッション, Molecular Glue研究の展望:近年の進展とAI活用の可能性
elix
0
130
Gemini と Looker で営業DX をドライブする / Driving Sales DX with Gemini and Looker
sansan_randd
0
120
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
1.1k
ダイナミックプライシング とその実例
skmr2348
3
600
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
420
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
0
110
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
310
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
51
7.4k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Visualization
eitanlees
146
15k
Fireside Chat
paigeccino
34
3.2k
Become a Pro
speakerdeck
PRO
26
5.1k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
Thoughts on Productivity
jonyablonski
69
4.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
133
33k
Transcript
ϝδϟʔϦʔΨʔͷ ࡱΕߴʢPythonฤʣ Shinichi Nakagawa(@shinyorke) kawasaki.rb #069 2019/2/27
Who am I? • Shinichi Nakagawa(@shinyorke) • ʢגʣωΫετϕʔε ٿΤϯδχΞ/CTO •
#rettypy ओ࠵ऀ • ΤϯδχΞ࠾༻ɾٕज़ใྺ3
ͦͷTechϒϩάຊʹඞཁͰ͔͢ʁ ʮ࠾༻ใʯΛޠΔใLTେձ#17@αΠϘζ #PRLT https://speakerdeck.com/shinyorke/sofalsetechburoguben-dang-nibi-yao-desuka-burogufalse-cuo-regao- number-prlt
ϒϩάͷࡱΕߴ=Ԡื ※ձࣾͷٕज़ϒϩάͷͰ͢ʂ ʢݸਓͲ͏͔Θ͔ΒΜʣ
ٿબखͷʮࡱΕߴʯ = ಘՁ ೋྥଧҰຊͲΕ͙Β͍ʹͭͳ͕Δʁ ૹΓόϯτΛఆྔతʹධՁͬͯʁʁ
ٿબखͷʮࡱΕߴʯࢉग़ • શଧ੮ͷϓϨʔΛಘͷߩݙͱͯ͠ఆྔԽ ʮಘظʯͱݺΕΔࢦඪɾߟ͑ํͰΔ • ଧ੮ʹཱͬͨ࣌ͷಘظͱɺ ଧ੮ऴྃޙͷಘظͷࠩͰ ʮϓϨʔ͕ಘʹͭͳ͕͔ͬͨʁʯΛग़͢ ˠಘՁͱݺΕΔͷ
ಘظͱಘՁʢৄ͘͠ʣ • ϥϯφʔͷ(8௨Γ)×ΞτΧϯτ(3௨Γ)=24௨Γͷঢ়گΛ ྨ,͔ͦ͜Β3ΞτऔΒΕΔ·Ͱʹ֫ಘͰ͖Δ(ͱࢥΘΕΔ)ฏۉత ͳಘΛʮಘظ(Run Expectancy)ʯͱݺͿ. • ϓϨʔ(ώοτ,ྥ,etc…)ʹΑͬͯ,ಘظΛ্͔͛ͨ(·ͨ Լ͔͛ͨ)ΛੵΈॏͶͯબखΛධՁ͢Δ. ͜ΕΛʮಘՁ(Run
Value)ʯͱݺͿ. • Α͘Θ͔Μͳ͍ਓɺAnalyzing Baseball Data with R ͘͠ϚωʔɾϘʔϧΛಡΜͰ͍ͩ͘͞ʂ
PythonͰࢉग़ͯ͠ΈΔ • Analyzing Baseball Data with Rͱ͍͏ຊʹɺ RͰͷܭࢉํ๏͕͋ΔͷͰͦΕΛRͰࣸܦ • R͔ΒPythonʹॻ͖͑
• جຊతʹpandasͷ͚ؔͩͰ࣮
ͪͳΈʹσʔλ • ࠓͷϝδϟʔϦʔάͷશଧ੮σʔλ retrosheet͍ͬͯ͏ެ։σʔληοτ • CSVϑΝΠϧɺ110MBͪΐ͍ • 19ສߦɺ96ྻʢ͏ͷ10ྻແ͍ʣ
ಘظʢMLB 2018ʣ த͕ಠࣗࢉग़, MLBͷαΠτͱಉ͡ͳͷͰਖ਼ղͷͣ ݩσʔλɿ https://github.com/chadwickbureau/baseballdatabank ແࢮ Ұࢮ ೋࢮ ϥϯφʔແ͠
0.49 0.26 0.10 Ұྥ 0.87 0.53 0.22 ೋྥ 1.13 0.68 0.32 ࡾྥ 1.43 1.00 0.35 Ұྥೋྥ 1.42 0.93 0.44 Ұྥࡾྥ 1.79 1.21 0.50 ೋྥࡾྥ 1.94 1.36 0.57 ຬྥ 2.35 1.47 0.77
Run Value = New State - State + Run Scored
Run valueɿಘՁʢࡱΕߴʣ New Stateɿଧ੮݁Ռͷಘظ Stateɿଧ੮ʹཱͭલͷಘظ Run Scoredɿ࣮ࡍʹೖͬͨಘʢ0ʙ4ʣ
ܭࢉྫ • ແࢮ1ྥ͔Β͕֮ΊΔೋྥଧͰແࢮ2,3ྥ 1.94(2,3ྥ) - 0.87(1ྥ) + 0() = 1.07
ࡱΕߴ͋Δύλʔϯ • ແࢮ1ྥ͔ΒଉΛٵ͏༻ʹόϯτޭ1ࢮ2ྥ 0.68(1ࢮ2ྥ) - 0.87(1ྥ) + 0() = -0.19 ΉΉʁΉ͠ΖԼ͕ͬͯΔͧʁʁ • ୯७ͳྫ͕ͩ͜ΕͰϓϨʔධՁՄೳ
͜ΕͰϝδϟʔϦʔΨʔʹͯΊ ධՁ͢ΔͱͲ͏ͳΔ͔ʁʁʁ
…ͱ͍͏ଓ͖ͷɺ ʮBaseball Play Study 2019य़ʯ Ͱ൸࿐͢Δʢ͔ʣ ※3/27(ਫ)ϓϨΠϘʔϧ⽁ #bpstudy
͓͠·͍.