Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
やきう選手の撮れ高(打者編) #kwskrb 2019/2/27 LT資料
Search
Shinichi Nakagawa
PRO
February 27, 2019
Research
0
380
やきう選手の撮れ高(打者編) #kwskrb 2019/2/27 LT資料
kawasaki.rb #69 LTの資料に色々と足したり引いたりしたもの
Shinichi Nakagawa
PRO
February 27, 2019
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
420
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
83
86k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.4k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
2.9k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
530
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
PRO
5
12k
Other Decks in Research
See All in Research
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
300
Generative Models 2025
takahashihiroshi
21
12k
RapidPen: AIエージェントによるペネトレーションテスト 初期侵入全自動化の研究
laysakura
0
1.6k
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
220
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
230
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
120
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
1k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
270
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
190
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
250
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
200
学生向けアンケート<データサイエンティストについて>
datascientistsociety
PRO
0
3.8k
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Why Our Code Smells
bkeepers
PRO
336
57k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Making Projects Easy
brettharned
116
6.3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Music & Morning Musume
bryan
46
6.7k
Transcript
ϝδϟʔϦʔΨʔͷ ࡱΕߴʢPythonฤʣ Shinichi Nakagawa(@shinyorke) kawasaki.rb #069 2019/2/27
Who am I? • Shinichi Nakagawa(@shinyorke) • ʢגʣωΫετϕʔε ٿΤϯδχΞ/CTO •
#rettypy ओ࠵ऀ • ΤϯδχΞ࠾༻ɾٕज़ใྺ3
ͦͷTechϒϩάຊʹඞཁͰ͔͢ʁ ʮ࠾༻ใʯΛޠΔใLTେձ#17@αΠϘζ #PRLT https://speakerdeck.com/shinyorke/sofalsetechburoguben-dang-nibi-yao-desuka-burogufalse-cuo-regao- number-prlt
ϒϩάͷࡱΕߴ=Ԡื ※ձࣾͷٕज़ϒϩάͷͰ͢ʂ ʢݸਓͲ͏͔Θ͔ΒΜʣ
ٿબखͷʮࡱΕߴʯ = ಘՁ ೋྥଧҰຊͲΕ͙Β͍ʹͭͳ͕Δʁ ૹΓόϯτΛఆྔతʹධՁͬͯʁʁ
ٿબखͷʮࡱΕߴʯࢉग़ • શଧ੮ͷϓϨʔΛಘͷߩݙͱͯ͠ఆྔԽ ʮಘظʯͱݺΕΔࢦඪɾߟ͑ํͰΔ • ଧ੮ʹཱͬͨ࣌ͷಘظͱɺ ଧ੮ऴྃޙͷಘظͷࠩͰ ʮϓϨʔ͕ಘʹͭͳ͕͔ͬͨʁʯΛग़͢ ˠಘՁͱݺΕΔͷ
ಘظͱಘՁʢৄ͘͠ʣ • ϥϯφʔͷ(8௨Γ)×ΞτΧϯτ(3௨Γ)=24௨Γͷঢ়گΛ ྨ,͔ͦ͜Β3ΞτऔΒΕΔ·Ͱʹ֫ಘͰ͖Δ(ͱࢥΘΕΔ)ฏۉత ͳಘΛʮಘظ(Run Expectancy)ʯͱݺͿ. • ϓϨʔ(ώοτ,ྥ,etc…)ʹΑͬͯ,ಘظΛ্͔͛ͨ(·ͨ Լ͔͛ͨ)ΛੵΈॏͶͯબखΛධՁ͢Δ. ͜ΕΛʮಘՁ(Run
Value)ʯͱݺͿ. • Α͘Θ͔Μͳ͍ਓɺAnalyzing Baseball Data with R ͘͠ϚωʔɾϘʔϧΛಡΜͰ͍ͩ͘͞ʂ
PythonͰࢉग़ͯ͠ΈΔ • Analyzing Baseball Data with Rͱ͍͏ຊʹɺ RͰͷܭࢉํ๏͕͋ΔͷͰͦΕΛRͰࣸܦ • R͔ΒPythonʹॻ͖͑
• جຊతʹpandasͷ͚ؔͩͰ࣮
ͪͳΈʹσʔλ • ࠓͷϝδϟʔϦʔάͷશଧ੮σʔλ retrosheet͍ͬͯ͏ެ։σʔληοτ • CSVϑΝΠϧɺ110MBͪΐ͍ • 19ສߦɺ96ྻʢ͏ͷ10ྻແ͍ʣ
ಘظʢMLB 2018ʣ த͕ಠࣗࢉग़, MLBͷαΠτͱಉ͡ͳͷͰਖ਼ղͷͣ ݩσʔλɿ https://github.com/chadwickbureau/baseballdatabank ແࢮ Ұࢮ ೋࢮ ϥϯφʔແ͠
0.49 0.26 0.10 Ұྥ 0.87 0.53 0.22 ೋྥ 1.13 0.68 0.32 ࡾྥ 1.43 1.00 0.35 Ұྥೋྥ 1.42 0.93 0.44 Ұྥࡾྥ 1.79 1.21 0.50 ೋྥࡾྥ 1.94 1.36 0.57 ຬྥ 2.35 1.47 0.77
Run Value = New State - State + Run Scored
Run valueɿಘՁʢࡱΕߴʣ New Stateɿଧ੮݁Ռͷಘظ Stateɿଧ੮ʹཱͭલͷಘظ Run Scoredɿ࣮ࡍʹೖͬͨಘʢ0ʙ4ʣ
ܭࢉྫ • ແࢮ1ྥ͔Β͕֮ΊΔೋྥଧͰແࢮ2,3ྥ 1.94(2,3ྥ) - 0.87(1ྥ) + 0() = 1.07
ࡱΕߴ͋Δύλʔϯ • ແࢮ1ྥ͔ΒଉΛٵ͏༻ʹόϯτޭ1ࢮ2ྥ 0.68(1ࢮ2ྥ) - 0.87(1ྥ) + 0() = -0.19 ΉΉʁΉ͠ΖԼ͕ͬͯΔͧʁʁ • ୯७ͳྫ͕ͩ͜ΕͰϓϨʔධՁՄೳ
͜ΕͰϝδϟʔϦʔΨʔʹͯΊ ධՁ͢ΔͱͲ͏ͳΔ͔ʁʁʁ
…ͱ͍͏ଓ͖ͷɺ ʮBaseball Play Study 2019य़ʯ Ͱ൸࿐͢Δʢ͔ʣ ※3/27(ਫ)ϓϨΠϘʔϧ⽁ #bpstudy
͓͠·͍.