Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
やきう選手の撮れ高(打者編) #kwskrb 2019/2/27 LT資料
Search
Shinichi Nakagawa
PRO
February 27, 2019
Research
0
370
やきう選手の撮れ高(打者編) #kwskrb 2019/2/27 LT資料
kawasaki.rb #69 LTの資料に色々と足したり引いたりしたもの
Shinichi Nakagawa
PRO
February 27, 2019
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
2.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
3.5k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
81
80k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.3k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
2.8k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
480
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
PRO
5
12k
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become a ML Engineer
shinyorke
PRO
10
17k
Other Decks in Research
See All in Research
The Economics of Platforms 輪読会 第1章
tomonatu8
0
140
eAI (Engineerable AI) プロジェクトの全体像 / Overview of eAI Project
ishikawafyu
0
370
Weekly AI Agents News! 12月号 プロダクト/ニュースのアーカイブ
masatoto
0
320
ソフトウェア研究における脅威モデリング
laysakura
0
1.6k
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.3k
Building Height Estimation Using Shadow Length in Satellite Imagery
satai
2
190
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
240
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
500
国際会議ACL2024参加報告
chemical_tree
1
430
2038年問題が思ったよりヤバい。検出ツールを作って脅威性評価してみた論文 | Kansai Open Forum 2024
ran350
8
3.8k
精度を無視しない推薦多様化の評価指標
kuri8ive
1
360
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
330
Featured
See All Featured
The Invisible Side of Design
smashingmag
299
50k
How GitHub (no longer) Works
holman
314
140k
Designing for Performance
lara
604
68k
Side Projects
sachag
452
42k
Into the Great Unknown - MozCon
thekraken
35
1.6k
Speed Design
sergeychernyshev
27
790
A designer walks into a library…
pauljervisheath
205
24k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Faster Mobile Websites
deanohume
306
31k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Transcript
ϝδϟʔϦʔΨʔͷ ࡱΕߴʢPythonฤʣ Shinichi Nakagawa(@shinyorke) kawasaki.rb #069 2019/2/27
Who am I? • Shinichi Nakagawa(@shinyorke) • ʢגʣωΫετϕʔε ٿΤϯδχΞ/CTO •
#rettypy ओ࠵ऀ • ΤϯδχΞ࠾༻ɾٕज़ใྺ3
ͦͷTechϒϩάຊʹඞཁͰ͔͢ʁ ʮ࠾༻ใʯΛޠΔใLTେձ#17@αΠϘζ #PRLT https://speakerdeck.com/shinyorke/sofalsetechburoguben-dang-nibi-yao-desuka-burogufalse-cuo-regao- number-prlt
ϒϩάͷࡱΕߴ=Ԡื ※ձࣾͷٕज़ϒϩάͷͰ͢ʂ ʢݸਓͲ͏͔Θ͔ΒΜʣ
ٿબखͷʮࡱΕߴʯ = ಘՁ ೋྥଧҰຊͲΕ͙Β͍ʹͭͳ͕Δʁ ૹΓόϯτΛఆྔతʹධՁͬͯʁʁ
ٿબखͷʮࡱΕߴʯࢉग़ • શଧ੮ͷϓϨʔΛಘͷߩݙͱͯ͠ఆྔԽ ʮಘظʯͱݺΕΔࢦඪɾߟ͑ํͰΔ • ଧ੮ʹཱͬͨ࣌ͷಘظͱɺ ଧ੮ऴྃޙͷಘظͷࠩͰ ʮϓϨʔ͕ಘʹͭͳ͕͔ͬͨʁʯΛग़͢ ˠಘՁͱݺΕΔͷ
ಘظͱಘՁʢৄ͘͠ʣ • ϥϯφʔͷ(8௨Γ)×ΞτΧϯτ(3௨Γ)=24௨Γͷঢ়گΛ ྨ,͔ͦ͜Β3ΞτऔΒΕΔ·Ͱʹ֫ಘͰ͖Δ(ͱࢥΘΕΔ)ฏۉత ͳಘΛʮಘظ(Run Expectancy)ʯͱݺͿ. • ϓϨʔ(ώοτ,ྥ,etc…)ʹΑͬͯ,ಘظΛ্͔͛ͨ(·ͨ Լ͔͛ͨ)ΛੵΈॏͶͯબखΛධՁ͢Δ. ͜ΕΛʮಘՁ(Run
Value)ʯͱݺͿ. • Α͘Θ͔Μͳ͍ਓɺAnalyzing Baseball Data with R ͘͠ϚωʔɾϘʔϧΛಡΜͰ͍ͩ͘͞ʂ
PythonͰࢉग़ͯ͠ΈΔ • Analyzing Baseball Data with Rͱ͍͏ຊʹɺ RͰͷܭࢉํ๏͕͋ΔͷͰͦΕΛRͰࣸܦ • R͔ΒPythonʹॻ͖͑
• جຊతʹpandasͷ͚ؔͩͰ࣮
ͪͳΈʹσʔλ • ࠓͷϝδϟʔϦʔάͷશଧ੮σʔλ retrosheet͍ͬͯ͏ެ։σʔληοτ • CSVϑΝΠϧɺ110MBͪΐ͍ • 19ສߦɺ96ྻʢ͏ͷ10ྻແ͍ʣ
ಘظʢMLB 2018ʣ த͕ಠࣗࢉग़, MLBͷαΠτͱಉ͡ͳͷͰਖ਼ղͷͣ ݩσʔλɿ https://github.com/chadwickbureau/baseballdatabank ແࢮ Ұࢮ ೋࢮ ϥϯφʔແ͠
0.49 0.26 0.10 Ұྥ 0.87 0.53 0.22 ೋྥ 1.13 0.68 0.32 ࡾྥ 1.43 1.00 0.35 Ұྥೋྥ 1.42 0.93 0.44 Ұྥࡾྥ 1.79 1.21 0.50 ೋྥࡾྥ 1.94 1.36 0.57 ຬྥ 2.35 1.47 0.77
Run Value = New State - State + Run Scored
Run valueɿಘՁʢࡱΕߴʣ New Stateɿଧ੮݁Ռͷಘظ Stateɿଧ੮ʹཱͭલͷಘظ Run Scoredɿ࣮ࡍʹೖͬͨಘʢ0ʙ4ʣ
ܭࢉྫ • ແࢮ1ྥ͔Β͕֮ΊΔೋྥଧͰແࢮ2,3ྥ 1.94(2,3ྥ) - 0.87(1ྥ) + 0() = 1.07
ࡱΕߴ͋Δύλʔϯ • ແࢮ1ྥ͔ΒଉΛٵ͏༻ʹόϯτޭ1ࢮ2ྥ 0.68(1ࢮ2ྥ) - 0.87(1ྥ) + 0() = -0.19 ΉΉʁΉ͠ΖԼ͕ͬͯΔͧʁʁ • ୯७ͳྫ͕ͩ͜ΕͰϓϨʔධՁՄೳ
͜ΕͰϝδϟʔϦʔΨʔʹͯΊ ධՁ͢ΔͱͲ͏ͳΔ͔ʁʁʁ
…ͱ͍͏ଓ͖ͷɺ ʮBaseball Play Study 2019य़ʯ Ͱ൸࿐͢Δʢ͔ʣ ※3/27(ਫ)ϓϨΠϘʔϧ⽁ #bpstudy
͓͠·͍.