Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
やきう選手の撮れ高(打者編) #kwskrb 2019/2/27 LT資料
Search
Shinichi Nakagawa
February 27, 2019
Research
0
370
やきう選手の撮れ高(打者編) #kwskrb 2019/2/27 LT資料
kawasaki.rb #69 LTの資料に色々と足したり引いたりしたもの
Shinichi Nakagawa
February 27, 2019
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
2
1.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
2
2.8k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
10
2.8k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
77
58k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
1
1.3k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
2
2.7k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
2
460
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
5
11k
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become a ML Engineer
shinyorke
9
16k
Other Decks in Research
See All in Research
大規模言語モデルを用いた日本語視覚言語モデルの評価方法とベースラインモデルの提案 【MIRU 2024】
kentosasaki
2
520
Weekly AI Agents News! 8月号 プロダクト/ニュースのアーカイブ
masatoto
1
190
Isotropy, Clusters, and Classifiers
hpprc
3
630
Physics of Language Models: Part 3.1, Knowledge Storage and Extraction
sosk
1
950
システムから変える 自分と世界を変えるシステムチェンジの方法論 / Systems Change Approaches
dmattsun
3
860
Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices
masakat0
0
220
[CV勉強会@関東 CVPR2024] Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation / kantocv 61th CVPR 2024
shunk031
1
450
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
20
3.2k
データサイエンティストをめぐる環境の違い 2024年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
580
3次元点群の分類における評価指標について
kentaitakura
0
410
Generative Predictive Model for Autonomous Driving 第61回 コンピュータビジョン勉強会@関東 (後編)
kentosasaki
0
210
ミニ四駆AI用制御装置の事例紹介
aks3g
0
160
Featured
See All Featured
Producing Creativity
orderedlist
PRO
341
39k
Building Your Own Lightsaber
phodgson
103
6.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
Docker and Python
trallard
40
3.1k
KATA
mclloyd
29
14k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Making Projects Easy
brettharned
115
5.9k
Code Reviewing Like a Champion
maltzj
520
39k
Transcript
ϝδϟʔϦʔΨʔͷ ࡱΕߴʢPythonฤʣ Shinichi Nakagawa(@shinyorke) kawasaki.rb #069 2019/2/27
Who am I? • Shinichi Nakagawa(@shinyorke) • ʢגʣωΫετϕʔε ٿΤϯδχΞ/CTO •
#rettypy ओ࠵ऀ • ΤϯδχΞ࠾༻ɾٕज़ใྺ3
ͦͷTechϒϩάຊʹඞཁͰ͔͢ʁ ʮ࠾༻ใʯΛޠΔใLTେձ#17@αΠϘζ #PRLT https://speakerdeck.com/shinyorke/sofalsetechburoguben-dang-nibi-yao-desuka-burogufalse-cuo-regao- number-prlt
ϒϩάͷࡱΕߴ=Ԡื ※ձࣾͷٕज़ϒϩάͷͰ͢ʂ ʢݸਓͲ͏͔Θ͔ΒΜʣ
ٿબखͷʮࡱΕߴʯ = ಘՁ ೋྥଧҰຊͲΕ͙Β͍ʹͭͳ͕Δʁ ૹΓόϯτΛఆྔతʹධՁͬͯʁʁ
ٿબखͷʮࡱΕߴʯࢉग़ • શଧ੮ͷϓϨʔΛಘͷߩݙͱͯ͠ఆྔԽ ʮಘظʯͱݺΕΔࢦඪɾߟ͑ํͰΔ • ଧ੮ʹཱͬͨ࣌ͷಘظͱɺ ଧ੮ऴྃޙͷಘظͷࠩͰ ʮϓϨʔ͕ಘʹͭͳ͕͔ͬͨʁʯΛग़͢ ˠಘՁͱݺΕΔͷ
ಘظͱಘՁʢৄ͘͠ʣ • ϥϯφʔͷ(8௨Γ)×ΞτΧϯτ(3௨Γ)=24௨Γͷঢ়گΛ ྨ,͔ͦ͜Β3ΞτऔΒΕΔ·Ͱʹ֫ಘͰ͖Δ(ͱࢥΘΕΔ)ฏۉత ͳಘΛʮಘظ(Run Expectancy)ʯͱݺͿ. • ϓϨʔ(ώοτ,ྥ,etc…)ʹΑͬͯ,ಘظΛ্͔͛ͨ(·ͨ Լ͔͛ͨ)ΛੵΈॏͶͯબखΛධՁ͢Δ. ͜ΕΛʮಘՁ(Run
Value)ʯͱݺͿ. • Α͘Θ͔Μͳ͍ਓɺAnalyzing Baseball Data with R ͘͠ϚωʔɾϘʔϧΛಡΜͰ͍ͩ͘͞ʂ
PythonͰࢉग़ͯ͠ΈΔ • Analyzing Baseball Data with Rͱ͍͏ຊʹɺ RͰͷܭࢉํ๏͕͋ΔͷͰͦΕΛRͰࣸܦ • R͔ΒPythonʹॻ͖͑
• جຊతʹpandasͷ͚ؔͩͰ࣮
ͪͳΈʹσʔλ • ࠓͷϝδϟʔϦʔάͷશଧ੮σʔλ retrosheet͍ͬͯ͏ެ։σʔληοτ • CSVϑΝΠϧɺ110MBͪΐ͍ • 19ສߦɺ96ྻʢ͏ͷ10ྻແ͍ʣ
ಘظʢMLB 2018ʣ த͕ಠࣗࢉग़, MLBͷαΠτͱಉ͡ͳͷͰਖ਼ղͷͣ ݩσʔλɿ https://github.com/chadwickbureau/baseballdatabank ແࢮ Ұࢮ ೋࢮ ϥϯφʔແ͠
0.49 0.26 0.10 Ұྥ 0.87 0.53 0.22 ೋྥ 1.13 0.68 0.32 ࡾྥ 1.43 1.00 0.35 Ұྥೋྥ 1.42 0.93 0.44 Ұྥࡾྥ 1.79 1.21 0.50 ೋྥࡾྥ 1.94 1.36 0.57 ຬྥ 2.35 1.47 0.77
Run Value = New State - State + Run Scored
Run valueɿಘՁʢࡱΕߴʣ New Stateɿଧ੮݁Ռͷಘظ Stateɿଧ੮ʹཱͭલͷಘظ Run Scoredɿ࣮ࡍʹೖͬͨಘʢ0ʙ4ʣ
ܭࢉྫ • ແࢮ1ྥ͔Β͕֮ΊΔೋྥଧͰແࢮ2,3ྥ 1.94(2,3ྥ) - 0.87(1ྥ) + 0() = 1.07
ࡱΕߴ͋Δύλʔϯ • ແࢮ1ྥ͔ΒଉΛٵ͏༻ʹόϯτޭ1ࢮ2ྥ 0.68(1ࢮ2ྥ) - 0.87(1ྥ) + 0() = -0.19 ΉΉʁΉ͠ΖԼ͕ͬͯΔͧʁʁ • ୯७ͳྫ͕ͩ͜ΕͰϓϨʔධՁՄೳ
͜ΕͰϝδϟʔϦʔΨʔʹͯΊ ධՁ͢ΔͱͲ͏ͳΔ͔ʁʁʁ
…ͱ͍͏ଓ͖ͷɺ ʮBaseball Play Study 2019य़ʯ Ͱ൸࿐͢Δʢ͔ʣ ※3/27(ਫ)ϓϨΠϘʔϧ⽁ #bpstudy
͓͠·͍.