Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
坂本勇人選手はいつ通算3,000安打を達成するか? AIに聞いてみました / Hayato S...
Search
Shinichi Nakagawa
PRO
December 13, 2020
Research
1
840
坂本勇人選手はいつ通算3,000安打を達成するか? AIに聞いてみました / Hayato Sakamoto Performance Prediction Using Feature Engineering with Machine Learning and Python
Sports Analytics Meetup #9 2020/12/13 LT
#Baseball #SABRmetrics #ML #Python
Shinichi Nakagawa
PRO
December 13, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
2.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
3.5k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
81
80k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.3k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
2.8k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
480
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
PRO
5
12k
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become a ML Engineer
shinyorke
PRO
10
17k
Other Decks in Research
See All in Research
Evaluating Tool-Augmented Agents in Remote Sensing Platforms
satai
2
150
精度を無視しない推薦多様化の評価指標
kuri8ive
1
360
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
satai
2
240
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
290
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
4.9k
書き手はどこを訪れたか? - 言語モデルで訪問行動を読み取る -
hiroki13
0
140
Composed image retrieval for remote sensing
satai
2
240
Neural Fieldの紹介
nnchiba
2
670
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
380
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
760
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
1.5k
Elix, CBI2024, スポンサードセッション, Molecular Glue研究の展望:近年の進展とAI活用の可能性
elix
0
130
Featured
See All Featured
Speed Design
sergeychernyshev
27
790
A designer walks into a library…
pauljervisheath
205
24k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Scaling GitHub
holman
459
140k
Gamification - CAS2011
davidbonilla
80
5.1k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
133
33k
Statistics for Hackers
jakevdp
797
220k
Why Our Code Smells
bkeepers
PRO
336
57k
Bash Introduction
62gerente
611
210k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
We Have a Design System, Now What?
morganepeng
51
7.4k
Transcript
ӫޫͷഎ൪߸6⃣ ࡔຊ༐ਓ3,000ຊ҆ଧه೦LT Shinichi Nakagawa(@shinyorke) Sports Analyst Meetup #9 2020/12/13
ʁʁʁʮ༐ਓ·ͩ2,000ຊ҆ଧΖʯ
ͦͷͱ͓ΓͰ͍͟͝·͢, ࣦྱ͠·ͨ͠
ࡔຊ༐ਓ͍ͭ௨ࢉ3,000ຊ҆ଧΛ ୡ͢Δ͔AIʹฉ͍ͯΈ·ͨ͠ Shinichi Nakagawa(@shinyorke) Sports Analyst Meetup #9 2020/12/13
ຊͷςʔϚ • ࡔຊ༐ਓ͕͍ͭ͝Ζ௨ࢉ3,000ຊ҆ଧΛୡ͢Δ͔༧͢Δ • ਅ໘ͳ, ༧ଌͲ͜·ͰͰ͖Δ͔ࢼͯ͠ΈΔ • ʮӫޫͷഎ൪߸6⃣ࡔຊ༐ਓ3,000ຊ҆ଧͷಓʯ͕ Կޙʹ์ө͞ΕΔ͔Θ͔Δ΄͏͕͍͍ΑͶʢదʣ
Who am I ?ʢ͓લ୭Αʣ • Shinichi Nakagawaʢத ৳Ұʣ • େͷSNSͰʮshinyorkeʢ͠ΜΑʔ͘ʣʯͱ໊͍ͬͯ·͢
• JX Press Corporation Senior Engineer ʢJX௨৴ࣾ γχΞɾΤϯδχΞʣ • Baseball Engineer, Data Scientist ʢੜͷٿΤϯδχΞɾσʔλαΠΤϯςΟετʣ • Ҏલ͓ࣄͰٿΤϯδχΞʮͩͬͨʯਓ
ʲCMʳαʔόʔαΠυΠϯλʔϯืूͯ͠·͢ https://www.wantedly.com/projects/543767 ※ֶੜ͞ΜݶఆͰ͢&ผʹεϙʔπͷࣄͬͯ༁͡Όͳ͍Ͱ͢
26.4ඵͰৼΓฦΔ2020ͷϓϩٿ • ιϑτόϯΫϗʔΫεຊҰʢ4࿈ʣ • όϯςϦϯυʔϜφΰϠ&౦ژυʔϜͷձࣾ(ry • ࡔຊ༐ਓʢڊਓʣ, ӈଧऀͱͯ͠࠷গͰ2,000ຊ҆ଧୡ ͦͷଞʹ͍ͬͺ͍͋Δ͚ͲׂѪʢదʣ
ࡔຊ༐ਓબखͳΒ3,000ຊ҆ଧ༨༟Ͱ • 31ࡀ10ϲ݄Ͱͷୡӈଧऀ࠷ • গͳ͘ͱ͋ͱ4, 5ݱ͢ΔͰ͠ΐ γϣʔτͰݩؾʹΠέͯ·͢͠. • ͡Ό͍͋ͭࠒ3,000ຊ҆ଧΔͷ͞?
͜Εͬͯաڈͷσʔλ͔Β͏·͍۩߹ʹΕ༧ଌՄೳͰ? https://www.nikkansports.com/baseball/news/202011080000831.html
ͱ͍͏Θ͚Ͱ༧ଌϞσϧΛ࡞Γ·ͨ͠. ࠓճPyCon JP 2020ͰͬͨͭΛݩʹͪΐͬͱΞϨϯδͯ͠࡞Γ·ͨ͠. https://shinyorke.hatenablog.com/entry/baseball-and-ml-with-python
ࠓճͷΞϓϩʔνʢΊͬͪΌཁʣ • ϝδϟʔϦʔάͷσʔλΛͬͯ 1.࠷ۙ୳ࡧܥͷΞϧΰϦζϜͰ͍ۙબख୳͠ 2.֬ʢͬΆ͍ʣํ๏Ͱ༧ଌΛ࡞Δ • ↑ͷ݁ՌΛStreamlitͰՄࢹԽ
ͳͥϝδϟʔͷσʔλͳͷ͔ • 3,000ຊ҆ଧୡऀ, ຊϓϩٿҰਓ͔͍͠ͳ͍ʢ͠ʣ ※ʮ୭Ͱ͔͢ʁʯ࣭ͬͯ׃ͧ • ϝδϟʔେਖ਼ٛΠνϩʔ༷ଞ, 3,000ຊ҆ଧୡऀ͕ଟ͍. •
σʔλͷϥΠηϯε&εΫϨΠϐϯάͱ͔େมͰ͠ΐ.
ࡔຊ༐ਓʹ͍ۙϝδϟʔϦʔΨʔ ࢲʢshinyorkeʣ࡞, ʮzobristʯϞσϧͰग़ͨ݁͠Ռʢ΄΅ANNͰ͢ʣ ϝδϟʔϦʔάΛͬͯΔਓ͔ΒΈΔͱೲಘͷ݁ՌͩͱࢥΘΕ ໊͓લνʔϜ ʢ௨ࢉʣ ଧຊྥଧ௨ࢉ҆ଧ ಛͱ͔ 9BOEFS#PHBFSUT
ʢ3FE4PYʣ ଧ੮ӈଧ ௨ࢉ014 ݱ۶ࢦͷ߈ܸܕγϣʔτ %FSFL+FUFS ʢ:BOLFFTʣ ଧ੮ӈଧ આ໌ෆཁͷελʔ खʹݶΔͱ௨ࢉ҆ଧҐ 5SPZ5VMPXJU[LJ ʢ3PDLJFT FUDʜʣ ଧ੮ӈଧ ௨ࢉ014 ߈ܸܕγϣʔτ ͳ͓ຊڌ +JNNZ3PMMJOT ʢ1IJMMJFT FUDʜʣ ଧ੮྆ଧ कඋܕͳγϣʔτ ࣮ಇͷແࣄ೭໊അ
σϞ͠·͢
ࡔຊ༐ਓͷࠓޙ - ҆ଧɾຊྥଧɾଧ ࣅ͍ͯΔϝδϟʔϦʔΨʔXਓͷΛ75%λΠϧͰࢉग़
ࡔຊ༐ਓͷࠓޙ - ଧ ࣅ͍ͯΔϝδϟʔϦʔΨʔXਓͷΛ75%λΠϧͰࢉग़
ࡔຊ༐ਓͷࠓޙΛ·ͱΊΔͱ 2027ʢ38ࡀʣ·Ͱنఆଧ֬อͰ͖ΔͬΆ͍. ※نఆଧ443ଧ੮ʢ2019ͷࢼ߹143×3.1Ͱܭࢉ, ࢛ࣺޒೖʣ ྸ ଧ ҆ଧ ຊྥଧ
ଧ ଧ
ࡔຊ༐ਓબख, ௨ࢉʢ༧ଌʣ ͜ΕͰγϣʔτͩͬͨΒڧ͗͢Ͱʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ
˞ݱ࣮ ˞༧ଌ ௨ࢉʢ༧ଌʣ
ߟ • 39ࡀ͝Ζʹ3,000ຊ҆ଧୡ…ͷϖʔε·͋·͋͋Γͦ͏. ͨͩ͠ྼԽආ͚ΒΕͳ͍. • 36ࡀ͔ΒͷٸܹྼԽकඋҐஔมߋͱ͔ͰઌԆ͠Ͱ͖ͦ͏. ʲࢀߟʳѨ෦৻೭ॿ36ࡀ͔Βัख->ϑΝʔετʹίϯόʔτ •
௨ࢉຊྥଧʢ༧ଌʣ321ຊ…334ຊߦͬͯཉ͍͚͠ͲͲ͏͔
͜ͷ͓͠·͍Ͱ͢…͕ʂʁ • ༧ଌϞσϧ࡞ΓηΠόʔϝτϦΫεແ͠ͰͰ͖ͳ͔ͬͨ • ʮRʹΑΔηΠόʔϝτϦΫεೖʯग़ͨ͠, ͜ͷลΛಛྔΤϯδχΞϦϯάతʹৼΓฦΓ͍ͨ • ͍ͬͯ͏ϩϯάτʔΫ͕Ͱ͖ͨΒ͍͍ͳ⚾
ʢҙ༁ɿࠓճંͬͨϞσϧͷΛ͍ͨ͠ʣ ӡӦͷօ༷, ͝ݕ౼ΑΖ͓͘͠ئ͍͠·͢
ήʔϜηοτ⚾ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)