Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
坂本勇人選手はいつ通算3,000安打を達成するか? AIに聞いてみました / Hayato S...
Search
Shinichi Nakagawa
PRO
December 13, 2020
Research
1
900
坂本勇人選手はいつ通算3,000安打を達成するか? AIに聞いてみました / Hayato Sakamoto Performance Prediction Using Feature Engineering with Machine Learning and Python
Sports Analytics Meetup #9 2020/12/13 LT
#Baseball #SABRmetrics #ML #Python
Shinichi Nakagawa
PRO
December 13, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
240
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
120
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.6k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.2k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
490
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.8k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.5k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.2k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
90k
Other Decks in Research
See All in Research
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
270
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
330
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
430
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
440
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
730
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
440
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.2k
投資戦略202508
pw
0
580
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
150
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.4k
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Documentation Writing (for coders)
carmenintech
76
5.2k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
It's Worth the Effort
3n
187
29k
Faster Mobile Websites
deanohume
310
31k
Navigating Team Friction
lara
191
16k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Transcript
ӫޫͷഎ൪߸6⃣ ࡔຊ༐ਓ3,000ຊ҆ଧه೦LT Shinichi Nakagawa(@shinyorke) Sports Analyst Meetup #9 2020/12/13
ʁʁʁʮ༐ਓ·ͩ2,000ຊ҆ଧΖʯ
ͦͷͱ͓ΓͰ͍͟͝·͢, ࣦྱ͠·ͨ͠
ࡔຊ༐ਓ͍ͭ௨ࢉ3,000ຊ҆ଧΛ ୡ͢Δ͔AIʹฉ͍ͯΈ·ͨ͠ Shinichi Nakagawa(@shinyorke) Sports Analyst Meetup #9 2020/12/13
ຊͷςʔϚ • ࡔຊ༐ਓ͕͍ͭ͝Ζ௨ࢉ3,000ຊ҆ଧΛୡ͢Δ͔༧͢Δ • ਅ໘ͳ, ༧ଌͲ͜·ͰͰ͖Δ͔ࢼͯ͠ΈΔ • ʮӫޫͷഎ൪߸6⃣ࡔຊ༐ਓ3,000ຊ҆ଧͷಓʯ͕ Կޙʹ์ө͞ΕΔ͔Θ͔Δ΄͏͕͍͍ΑͶʢదʣ
Who am I ?ʢ͓લ୭Αʣ • Shinichi Nakagawaʢத ৳Ұʣ • େͷSNSͰʮshinyorkeʢ͠ΜΑʔ͘ʣʯͱ໊͍ͬͯ·͢
• JX Press Corporation Senior Engineer ʢJX௨৴ࣾ γχΞɾΤϯδχΞʣ • Baseball Engineer, Data Scientist ʢੜͷٿΤϯδχΞɾσʔλαΠΤϯςΟετʣ • Ҏલ͓ࣄͰٿΤϯδχΞʮͩͬͨʯਓ
ʲCMʳαʔόʔαΠυΠϯλʔϯืूͯ͠·͢ https://www.wantedly.com/projects/543767 ※ֶੜ͞ΜݶఆͰ͢&ผʹεϙʔπͷࣄͬͯ༁͡Όͳ͍Ͱ͢
26.4ඵͰৼΓฦΔ2020ͷϓϩٿ • ιϑτόϯΫϗʔΫεຊҰʢ4࿈ʣ • όϯςϦϯυʔϜφΰϠ&౦ژυʔϜͷձࣾ(ry • ࡔຊ༐ਓʢڊਓʣ, ӈଧऀͱͯ͠࠷গͰ2,000ຊ҆ଧୡ ͦͷଞʹ͍ͬͺ͍͋Δ͚ͲׂѪʢదʣ
ࡔຊ༐ਓબखͳΒ3,000ຊ҆ଧ༨༟Ͱ • 31ࡀ10ϲ݄Ͱͷୡӈଧऀ࠷ • গͳ͘ͱ͋ͱ4, 5ݱ͢ΔͰ͠ΐ γϣʔτͰݩؾʹΠέͯ·͢͠. • ͡Ό͍͋ͭࠒ3,000ຊ҆ଧΔͷ͞?
͜Εͬͯաڈͷσʔλ͔Β͏·͍۩߹ʹΕ༧ଌՄೳͰ? https://www.nikkansports.com/baseball/news/202011080000831.html
ͱ͍͏Θ͚Ͱ༧ଌϞσϧΛ࡞Γ·ͨ͠. ࠓճPyCon JP 2020ͰͬͨͭΛݩʹͪΐͬͱΞϨϯδͯ͠࡞Γ·ͨ͠. https://shinyorke.hatenablog.com/entry/baseball-and-ml-with-python
ࠓճͷΞϓϩʔνʢΊͬͪΌཁʣ • ϝδϟʔϦʔάͷσʔλΛͬͯ 1.࠷ۙ୳ࡧܥͷΞϧΰϦζϜͰ͍ۙબख୳͠ 2.֬ʢͬΆ͍ʣํ๏Ͱ༧ଌΛ࡞Δ • ↑ͷ݁ՌΛStreamlitͰՄࢹԽ
ͳͥϝδϟʔͷσʔλͳͷ͔ • 3,000ຊ҆ଧୡऀ, ຊϓϩٿҰਓ͔͍͠ͳ͍ʢ͠ʣ ※ʮ୭Ͱ͔͢ʁʯ࣭ͬͯ׃ͧ • ϝδϟʔେਖ਼ٛΠνϩʔ༷ଞ, 3,000ຊ҆ଧୡऀ͕ଟ͍. •
σʔλͷϥΠηϯε&εΫϨΠϐϯάͱ͔େมͰ͠ΐ.
ࡔຊ༐ਓʹ͍ۙϝδϟʔϦʔΨʔ ࢲʢshinyorkeʣ࡞, ʮzobristʯϞσϧͰग़ͨ݁͠Ռʢ΄΅ANNͰ͢ʣ ϝδϟʔϦʔάΛͬͯΔਓ͔ΒΈΔͱೲಘͷ݁ՌͩͱࢥΘΕ ໊͓લνʔϜ ʢ௨ࢉʣ ଧຊྥଧ௨ࢉ҆ଧ ಛͱ͔ 9BOEFS#PHBFSUT
ʢ3FE4PYʣ ଧ੮ӈଧ ௨ࢉ014 ݱ۶ࢦͷ߈ܸܕγϣʔτ %FSFL+FUFS ʢ:BOLFFTʣ ଧ੮ӈଧ આ໌ෆཁͷελʔ खʹݶΔͱ௨ࢉ҆ଧҐ 5SPZ5VMPXJU[LJ ʢ3PDLJFT FUDʜʣ ଧ੮ӈଧ ௨ࢉ014 ߈ܸܕγϣʔτ ͳ͓ຊڌ +JNNZ3PMMJOT ʢ1IJMMJFT FUDʜʣ ଧ੮྆ଧ कඋܕͳγϣʔτ ࣮ಇͷແࣄ೭໊അ
σϞ͠·͢
ࡔຊ༐ਓͷࠓޙ - ҆ଧɾຊྥଧɾଧ ࣅ͍ͯΔϝδϟʔϦʔΨʔXਓͷΛ75%λΠϧͰࢉग़
ࡔຊ༐ਓͷࠓޙ - ଧ ࣅ͍ͯΔϝδϟʔϦʔΨʔXਓͷΛ75%λΠϧͰࢉग़
ࡔຊ༐ਓͷࠓޙΛ·ͱΊΔͱ 2027ʢ38ࡀʣ·Ͱنఆଧ֬อͰ͖ΔͬΆ͍. ※نఆଧ443ଧ੮ʢ2019ͷࢼ߹143×3.1Ͱܭࢉ, ࢛ࣺޒೖʣ ྸ ଧ ҆ଧ ຊྥଧ
ଧ ଧ
ࡔຊ༐ਓબख, ௨ࢉʢ༧ଌʣ ͜ΕͰγϣʔτͩͬͨΒڧ͗͢Ͱʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ
˞ݱ࣮ ˞༧ଌ ௨ࢉʢ༧ଌʣ
ߟ • 39ࡀ͝Ζʹ3,000ຊ҆ଧୡ…ͷϖʔε·͋·͋͋Γͦ͏. ͨͩ͠ྼԽආ͚ΒΕͳ͍. • 36ࡀ͔ΒͷٸܹྼԽकඋҐஔมߋͱ͔ͰઌԆ͠Ͱ͖ͦ͏. ʲࢀߟʳѨ෦৻೭ॿ36ࡀ͔Βัख->ϑΝʔετʹίϯόʔτ •
௨ࢉຊྥଧʢ༧ଌʣ321ຊ…334ຊߦͬͯཉ͍͚͠ͲͲ͏͔
͜ͷ͓͠·͍Ͱ͢…͕ʂʁ • ༧ଌϞσϧ࡞ΓηΠόʔϝτϦΫεແ͠ͰͰ͖ͳ͔ͬͨ • ʮRʹΑΔηΠόʔϝτϦΫεೖʯग़ͨ͠, ͜ͷลΛಛྔΤϯδχΞϦϯάతʹৼΓฦΓ͍ͨ • ͍ͬͯ͏ϩϯάτʔΫ͕Ͱ͖ͨΒ͍͍ͳ⚾
ʢҙ༁ɿࠓճંͬͨϞσϧͷΛ͍ͨ͠ʣ ӡӦͷօ༷, ͝ݕ౼ΑΖ͓͘͠ئ͍͠·͢
ήʔϜηοτ⚾ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)