Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
雑談対話システムにおけるdeep learning
Search
shu_suzuki
February 28, 2019
Technology
0
380
雑談対話システムにおけるdeep learning
長岡技術科学大学
自然言語処理研究室
B3勉強会
鈴木脩右
shu_suzuki
February 28, 2019
Tweet
Share
More Decks by shu_suzuki
See All by shu_suzuki
文献紹介:Investigating Evaluation of Open-Domain Dialogue Systems With Human Generated Multiple References
shu_suzuki
0
190
文献紹介:Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
shu_suzuki
0
83
文献紹介: How to Make Context More Useful? An Empirical Study on Context-Aware Neural Conversational Models
shu_suzuki
0
340
文献紹介:Conversational Response Re-ranking Based on Event Causality and Role Factored Tensor Event Embedding
shu_suzuki
0
160
文献紹介:Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables
shu_suzuki
0
76
文献紹介:ReCoSa: Detecting the Relevant Contexts with Self-Attention for Multi-turn Dialogue Generation
shu_suzuki
0
210
文献紹介:Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
shu_suzuki
0
120
文献紹介:Why are Sequence-to-Sequence Models So Dull?
shu_suzuki
0
69
文献紹介:Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network
shu_suzuki
0
210
Other Decks in Technology
See All in Technology
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
110
AI駆動開発の実践とその未来
eltociear
1
410
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
5
570
.NET 10の概要
tomokusaba
0
120
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.1k
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.5k
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
280
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
140
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
410
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
1.9k
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
140
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
3.6k
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.1k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
0
160
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
180
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
30
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
370
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Fireside Chat
paigeccino
41
3.8k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Prompt Engineering for Job Search
mfonobong
0
120
Scaling GitHub
holman
464
140k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Transcript
雑談対話システムにおけるdeep learning 鈴木脩右 February 28, 2019 長岡技術科学大学 自然言語処理研究室 1
参考資料 [1] Wei Wu,Rui Yan.Deep Chit-Chat: Deep learning for ChatBots.EMNLP.2018.http:
//www.ruiyan.me/pubs/tutorial-emnlp18.pdf ※本スライドの画像,表は上記資料より引用 2
目次 雑談対話システムとは 応答生成 コーパス 評価方法 付加要素 まとめ 3
雑談対話システムとは
雑談対話システムとは • 名前の通り,雑談をする対話システムのこと.(例:りんな) • 非タスク指向かつオープンドメインの対話システム. • アプローチは,主に以下の 2 つ •
検索ベース • 生成ベース 4
応答生成
seq2seq • Encoder で,ユーザからの発話を解析 • Decoder で,応答を生成 • 一問一答しかできない (対話の文脈を考慮できない)
• Attention の付け方は,Global,Local,Hybrid など様々 5
階層的Encoder-Decoder (HRED) • それまでの対話から,次の 発話を生成可能 • Encoder,Context,Decoder の三層で構成 • Encoder
で,ユーザ発話を ベクトルに変換 • Context で,対話の文脈を まとめてベクトルに変換 • Decoder で,応答を生成 6
潜在変数HRED(VHRED) • HRED は応答に多様性がない.つまり,A の発話に対して, 必ず B と応答してしまう • こういった問題を解決するため,Context
層に確率的なノイ ズを乗せる 7
コーパス
コーパス • Ubuntu Dialogue Corpus Ubuntu forum のチャットルームの会話からデータセットを 作成 •
Twitter • Yahoo!知恵袋 ユーザ同士でのやり取りがあるサービスをコーパスにしている 8
評価方法
評価方法 • 非タスク指向型の対話システムを自動で評価することは困難 • 人手での評価はコストが大きい • 評価するためのモデルを構築する研究がある 9
ADEM • HRED モデルで,文脈,参照応答,モデル応答を評価 • 人手による評価と近い評価ができる 10
ADVMT • 既存手法では単言語に着目 • 多言語に対応した評価手法を作りたい • 各言語を一つのタスクとしてマルチタスクで学習 • 言語に依存しない部分を理解するために敵対的学習 11
付加要素
付加要素 色々な要素を付加する研究もある • 対話のトピックに着目 • 感情表現 • 絵文字から,感情分析 • 対話システム自体に個性を持たせる
12
まとめ
まとめ • HRED モデルで,文脈を考慮した応答生成が可能 • さらに,潜在変数をノイズとして加えることで応答に多様 性を持たせる • コーパスには,実サービスでのユーザ同士のやりとりを使 うことが多い
• 自動で評価するために,モデルを構築する研究がある • ただ雑談をするだけでなく,特色を持たせる研究もある 13