• 2.3 Standardization • 2.4 Inverse probability weighting • Fine Points • 2.1 Crossover experiments • 2.2 Risk period • Technical Points • 2.1 Full exchangeability and mean exchangeability • 2.2 Formal definition of IP weights • 2.3 Equivalence of IP weighting and standardization 2
Ya = 1 A = 1 = Pr Ya = 1 A = 0 (= Pr Ya = 1 ) or , for all a が成り立つはず。 • しかし、今回は治療群と非治療群とで予後因子Lの分布が違う (69%(=9/13) vs 43%(=3/7))。 • 治療AがYaを予測しているため、 が成立しない。 14
Stratification) L=1のとき Pr Ya = 1 A = 1, L = 1 / Pr Ya = 1 A = 0, L = 1 L=0のとき Pr Ya = 1 A = 1, L = 0 / Pr Ya = 1 A = 0, L = 0 • 平均のcaucal effectを計算 • Standardization • Inverse probability weighting 17
exchangeability: The set of all treatment values: The set of all counterfactual outcome: • Mean exchangeability: E = = E[] • Exchangeability ならば mean exchangeability は成り立つが、逆 は成り立たない(例えば、分散などの平均以外のパラメータが treatment と独立にならないため)。 34
mean = Pr = 1 = , = Pr = IP weighted mean = E[ = [|] ] Standardized mean = IP weighted mean の証明。 証明) IP weighted mean = E[ = [|] ] IP weighted mean = 1 [|] {E = , = Pr[ = ]} IP weighted mean = Pr = 1 = , = Pr = IP weighted mean = Standardized mean 37
meanについて IP weighted mean = E[ = [|] ] IP weighted mean = E[ = [|] ] ∵consistensy IP weighted mean = E{E = | } ∵条件付期待値の公式 IP weighted mean = E{E = | E[|]} ∵condiditional exchangeability IP weighted mean = E{E | } ∵E = | = 1 IP weighted mean = E IP weighted mean = counterfactual outcome 39
If. Boca Raton: Chapman & Hall/CRC. • 条件付期待値, 分散の意味と有名公式 from https://mathtrain.jp/condexpectation. • Icons made by Freepik, Those Icons and Smashicons from www.flaticon.com. 40