Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
疫学・統計セミナー:疾病と要因との関連
Search
Shuntaro Sato
December 22, 2019
Science
1
470
疫学・統計セミナー:疾病と要因との関連
関連の指標には,主にリスク差,リスク比,オッズ比,および発生率比(率比)があります.これらについて説明しています.
Shuntaro Sato
December 22, 2019
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
290
仮説検定とP値
shuntaros
8
11k
Target trial emulationの概要
shuntaros
2
3.5k
Win ratio その2
shuntaros
0
550
Win ratioとは何か?
shuntaros
0
3.1k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
1.2k
「回帰分析から分かること」と「変数選択」
shuntaros
17
21k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.7k
Other Decks in Science
See All in Science
My Little Monster
juzishuu
0
320
HajimetenoLT vol.17
hashimoto_kei
1
110
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
200
データマイニング - ノードの中心性
trycycle
PRO
0
320
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
900
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
280
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
Algorithmic Aspects of Quiver Representations
tasusu
0
130
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
140
検索と推論タスクに関する論文の紹介
ynakano
1
110
Featured
See All Featured
So, you think you're a good person
axbom
PRO
0
1.8k
Automating Front-end Workflow
addyosmani
1371
200k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
250
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
From π to Pie charts
rasagy
0
86
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
740
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
120
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
Documentation Writing (for coders)
carmenintech
77
5.2k
Transcript
1 ࣬පͱཁҼͱͷؔ࿈ $IVOUBSP !4IVOUBSPPP Ӹֶɾ౷ܭηϛφʔ w ϦεΫࠩ w ϦεΫൺ w
Φοζൺ w ൃੜൺ
͓͞Β͍ 2
ूஂதͷ࣬පൃੜͭͷࢦඪʢʣ 3 ࣬පͷൃੜجຊతʹͭͷࢦඪͰଌఆ͢Δ ൃੜׂ߹ʢ*1*ODJEFODFQSPQPSUJPOʣ ൃੜΦοζʢ0EET*ODJEFODF0EETʣ ൃੜʢ*3*ODJEFODFSBUFʣ
༗පʢ1SFWBMFODFʣ
ूஂதͷ࣬පൃੜͭͷࢦඪʢʣ 4 "͞Μ #͞Μ $͞Μ %͞Μ &͞Μ '͞Μ 0 1
2 3 4 5 Year ٤Ԏ ഏ͕Μͷൃੜ $2 ഏ͕Μͷൃੜ ࣄނࢮˠڝ߹ϦεΫ Ҿӽ͠ˠ-PTTUPGPMMPXVQ ൃੜׂ߹ ൃੜΦοζ ൃੜ IP = 3/6 Odds = (3/6)/(1 − 3/6) IR = 3/(3 + 5 + 2 + 4 + 2 + 2)
ൺֱ͢Δ 5
ԿΛൺֱ͢Δ͔ 6 ݚڀରूஂ മ࿐ʢհೖʣ͋Γ മ࿐ʢհೖʣͳ͠ˠඇമ࿐ w ͋Δݚڀରूஂʹ͓͚Δɼ മ࿐ɾඇമ࿐܈͝ͱͷ࣬පൃੜΛൺֱ͢Δ w ಘΒΕͨɼؔ࿈ͷఔΛࣔ͢
࣬පൃੜ / / " " ൃੜ࣌ؒ 5 5
ࠩʢ%J⒎FSFODFʣͱൺʢ3BUJPʣ 7 ൃੜׂ߹ʢ*1*ODJEFODFQSPQPSUJPOʣ ൃੜΦοζʢ0EET*ODJEFODF0EETʣ ൃੜʢ*3*ODJEFODFSBUFʣ ൃੜׂ߹ Φοζ
ൃੜ ࠩ ʢ%J⒎FSFODFʣ ϦεΫࠩ 3JTLEJ⒎FSFODF 3% 3BUFEJ⒎FSFODF ൺ ʢ3BUJPʣ ϦεΫൺ 3JTLSBUJP 33 Φοζൺ 0EETSBUJP 03 ൺ 3BUFSBUJP 33 ·ͱΊͯ૬ରϦεΫʢ3FMBUJWFSJTLʣͱݴ͏͜ͱ͋Δ͕ɼ ਪ͞Εͳ͍
%J⒎FSFODFNFBTVSF 8 ݚڀରूஂ മ࿐ ඇമ࿐ ࣬පൃੜ / / " "
ൃੜ࣌ؒ 5 5 ϦεΫࠩʢ3JTLEJ⒎FSFODFʣ RD = A1 N1 − A0 N0 w ΠϕϯτൃੜϦεΫͷ ઈରతͳ૿Ճʢ·ͨݮগʣΛࣔ͢ࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ3% ൃੜࠩʢ*ODJEFODFSBUFEJ⒎FSFODFʣ Rate difference = A1 T1 − A0 T0 w Πϕϯτൃੜͷ ઈରతͳ૿Ճʢ·ͨݮগʣΛࣔ͢ࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ3BUFEJ⒎FSFODF
3BUJPNFBTVSFʢʣ 9 ݚڀରूஂ മ࿐ ඇമ࿐ / / " " 5
5 ϦεΫൺʢ3JTLSBUJPʣ RR = A1 /N1 A0 /N0 = R1 R0 w ΠϕϯτൃੜϦεΫ͕Կഒʢ·ͨԿ ͷ̍ʣͱͳ͔ͬͨΛࣔ͢૬ରతͳࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ33 Φοζൺʢ0EETSBUJPʣ OR = R1 /(1 − R1 ) R0 /(1 − R0 ) w ΠϕϯτൃੜΦοζ͕Կഒʢ·ͨԿ ͷ̍ʣͱͳ͔ͬͨΛࣔ͢૬ରతͳࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ03
3BUJPNFBTVSFʢʣ 10 ݚڀରूஂ മ࿐ ඇമ࿐ / / " " 5
5 ൃੜൺʢSBUFSBUJP *ODJEFODFSBUFSBUJPʣ Rate ratio = A1 /T1 A0 /T0 w Πϕϯτൃੜ͕Կഒʢ·ͨԿͷ ̍ʣͱͳ͔ͬͨΛࣔ͢૬ରతͳࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ3BUFSBUJP
ྫɿ3JTLSBUJP 33 11 Male Female With CHD 40 20 Without
CHD 60 80 Total 100 100 40 100 = 0.4 உੑʹ͓͚Δ$)%ͷϦεΫ 20 100 = 0.2 Կഒʁ ϦεΫൺʢ3JTL3BUJPʣ ঁੑʹର͢Δஉੑͷ$)%ͷϦεΫൺ 0.4 0.2 = 2 ϦεΫൺղऍ͍͢͠ ੑผ ףಈ຺৺࣬ױʢ$)%ʣ $2 ঁੑʹ͓͚Δ$)%ͷϦεΫ
ྫɿ0EETSBUJP 03 12 Male Female With CHD 40 20 Without
CHD 60 80 Total 100 100 40/100 60/100 = 40 60 = 0.67 20/100 80/100 = 20 80 = 0.25 Կഒʁ 0.67 0.25 = 2.7 Φοζൺղऍͮ͠Β͍ ੑผ ףಈ຺৺࣬ױʢ$)%ʣ $2 உੑʹ͓͚Δ$)%ͷΦοζ Φοζൺʢ0EET3BUJPʣ ঁੑʹର͢Δஉੑͷ$)%ͷΦοζൺ ঁੑʹ͓͚Δ$)%ͷΦοζ
ϦεΫൺͱΦοζൺ 13 • Φοζൺղऍͮ͠Β͍ • ؔ࿈ͷํੑϦεΫൺͱಉ͡ • رগ࣬ױͰ͋ΔͳΒɼΦοζൺϦεΫൺʹۙࣅͰ͖Δ Male Female
With CHD 20 40 Without CHD 80 60 Male Female With CHD 50 50 Without CHD 50 50 Male Female With CHD 40 20 Without CHD 60 80 33 03 33 03 33 03 33 03
5BLF)PNFNFTTBHF 14 w ؔ࿈ͷࢦඪʹɼओʹϦεΫࠩɼϦεΫൺɼΦοζൺɼ͓Αͼൃ ੜൺ͕͋Δ w ϦεΫൺͱΦοζൺࣅ͍ͯΔ͚ΕͲҧ͏
ࢀߟจݙ 3PUINBO ,+ (SFFOMBOE 4 -BTI 5- .PEFSOFQJEFNJPMPHZ
7PM 1IJMBEFMQIJB8PMUFST,MVXFS)FBMUI-JQQJODPUU8JMMJBNT8JMLJOT w Ӹֶʹ͍ͭͯ·ͱ·͍ͬͯΔɽҼՌਪʹॏ৺Λஔ͘ςΩετɽղɽ 3PUINBO ,+ ϩεϚϯͷӸֶՊֶతࢥߟͷ༠ࣰ͍ݪग़൛ࣾ w ΑΓ؆୯ͳ༰ +PIO .- "EJDUJPOBSZPGFQJEFNJPMPHZ0YGPSE6OJWFSTJUZ1SFTT w ࣙॻ͔ͩΒͦ͜ɼͱͯಡΈ͍͢ӳޠͰӸֶ༻ޠΛઆ໌͍ͯ͠Δ ୮ޙढ़࿕ দҪໜ೭ ৽൛ҩֶ౷ܭֶϋϯυϒοΫேॻళ ୮ޙढ़࿕ খఃଇ ҩֶ౷ܭֶͷࣄయேॻళ 15
16 $IVOUBSPͷ౷ܭɾӸֶνϟϯωϧ IUUQTXXXZPVUVCFDPNDIBOOFM 6$L8+QMZ4JLF4E.5M$G$L,+2