Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
疫学・統計セミナー:疾病と要因との関連
Search
Shuntaro Sato
December 22, 2019
Science
1
400
疫学・統計セミナー:疾病と要因との関連
関連の指標には,主にリスク差,リスク比,オッズ比,および発生率比(率比)があります.これらについて説明しています.
Shuntaro Sato
December 22, 2019
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
単施設でできる臨床研究の考え方
shuntaros
0
2.7k
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
220
仮説検定とP値
shuntaros
8
10k
Target trial emulationの概要
shuntaros
2
3.4k
Win ratio その2
shuntaros
0
520
Win ratioとは何か?
shuntaros
0
2.9k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
1.1k
「回帰分析から分かること」と「変数選択」
shuntaros
16
20k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.7k
Other Decks in Science
See All in Science
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
610
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
310
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
4
280
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
800
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
630
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
240
Accelerated Computing for Climate forecast
inureyes
PRO
0
120
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
450
Machine Learning for Materials (Challenge)
aronwalsh
0
330
🌏地球から🌌宇宙まで! 〜ケプラーの法則で繋がる天体の運動〜
syotasasaki593876
1
100
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
180
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
250
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Context Engineering - Making Every Token Count
addyosmani
3
55
A designer walks into a library…
pauljervisheath
207
24k
Into the Great Unknown - MozCon
thekraken
40
2k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
850
The Language of Interfaces
destraynor
161
25k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
1 ࣬පͱཁҼͱͷؔ࿈ $IVOUBSP !4IVOUBSPPP Ӹֶɾ౷ܭηϛφʔ w ϦεΫࠩ w ϦεΫൺ w
Φοζൺ w ൃੜൺ
͓͞Β͍ 2
ूஂதͷ࣬පൃੜͭͷࢦඪʢʣ 3 ࣬පͷൃੜجຊతʹͭͷࢦඪͰଌఆ͢Δ ൃੜׂ߹ʢ*1*ODJEFODFQSPQPSUJPOʣ ൃੜΦοζʢ0EET*ODJEFODF0EETʣ ൃੜʢ*3*ODJEFODFSBUFʣ
༗පʢ1SFWBMFODFʣ
ूஂதͷ࣬පൃੜͭͷࢦඪʢʣ 4 "͞Μ #͞Μ $͞Μ %͞Μ &͞Μ '͞Μ 0 1
2 3 4 5 Year ٤Ԏ ഏ͕Μͷൃੜ $2 ഏ͕Μͷൃੜ ࣄނࢮˠڝ߹ϦεΫ Ҿӽ͠ˠ-PTTUPGPMMPXVQ ൃੜׂ߹ ൃੜΦοζ ൃੜ IP = 3/6 Odds = (3/6)/(1 − 3/6) IR = 3/(3 + 5 + 2 + 4 + 2 + 2)
ൺֱ͢Δ 5
ԿΛൺֱ͢Δ͔ 6 ݚڀରूஂ മ࿐ʢհೖʣ͋Γ മ࿐ʢհೖʣͳ͠ˠඇമ࿐ w ͋Δݚڀରूஂʹ͓͚Δɼ മ࿐ɾඇമ࿐܈͝ͱͷ࣬පൃੜΛൺֱ͢Δ w ಘΒΕͨɼؔ࿈ͷఔΛࣔ͢
࣬පൃੜ / / " " ൃੜ࣌ؒ 5 5
ࠩʢ%J⒎FSFODFʣͱൺʢ3BUJPʣ 7 ൃੜׂ߹ʢ*1*ODJEFODFQSPQPSUJPOʣ ൃੜΦοζʢ0EET*ODJEFODF0EETʣ ൃੜʢ*3*ODJEFODFSBUFʣ ൃੜׂ߹ Φοζ
ൃੜ ࠩ ʢ%J⒎FSFODFʣ ϦεΫࠩ 3JTLEJ⒎FSFODF 3% 3BUFEJ⒎FSFODF ൺ ʢ3BUJPʣ ϦεΫൺ 3JTLSBUJP 33 Φοζൺ 0EETSBUJP 03 ൺ 3BUFSBUJP 33 ·ͱΊͯ૬ରϦεΫʢ3FMBUJWFSJTLʣͱݴ͏͜ͱ͋Δ͕ɼ ਪ͞Εͳ͍
%J⒎FSFODFNFBTVSF 8 ݚڀରूஂ മ࿐ ඇമ࿐ ࣬පൃੜ / / " "
ൃੜ࣌ؒ 5 5 ϦεΫࠩʢ3JTLEJ⒎FSFODFʣ RD = A1 N1 − A0 N0 w ΠϕϯτൃੜϦεΫͷ ઈରతͳ૿Ճʢ·ͨݮগʣΛࣔ͢ࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ3% ൃੜࠩʢ*ODJEFODFSBUFEJ⒎FSFODFʣ Rate difference = A1 T1 − A0 T0 w Πϕϯτൃੜͷ ઈରతͳ૿Ճʢ·ͨݮগʣΛࣔ͢ࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ3BUFEJ⒎FSFODF
3BUJPNFBTVSFʢʣ 9 ݚڀରूஂ മ࿐ ඇമ࿐ / / " " 5
5 ϦεΫൺʢ3JTLSBUJPʣ RR = A1 /N1 A0 /N0 = R1 R0 w ΠϕϯτൃੜϦεΫ͕Կഒʢ·ͨԿ ͷ̍ʣͱͳ͔ͬͨΛࣔ͢૬ରతͳࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ33 Φοζൺʢ0EETSBUJPʣ OR = R1 /(1 − R1 ) R0 /(1 − R0 ) w ΠϕϯτൃੜΦοζ͕Կഒʢ·ͨԿ ͷ̍ʣͱͳ͔ͬͨΛࣔ͢૬ରతͳࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ03
3BUJPNFBTVSFʢʣ 10 ݚڀରूஂ മ࿐ ඇമ࿐ / / " " 5
5 ൃੜൺʢSBUFSBUJP *ODJEFODFSBUFSBUJPʣ Rate ratio = A1 /T1 A0 /T0 w Πϕϯτൃੜ͕Կഒʢ·ͨԿͷ ̍ʣͱͳ͔ͬͨΛࣔ͢૬ରతͳࢦඪ w ҧ͍͕ແ͍ͱ͖ɼ3BUFSBUJP
ྫɿ3JTLSBUJP 33 11 Male Female With CHD 40 20 Without
CHD 60 80 Total 100 100 40 100 = 0.4 உੑʹ͓͚Δ$)%ͷϦεΫ 20 100 = 0.2 Կഒʁ ϦεΫൺʢ3JTL3BUJPʣ ঁੑʹର͢Δஉੑͷ$)%ͷϦεΫൺ 0.4 0.2 = 2 ϦεΫൺղऍ͍͢͠ ੑผ ףಈ຺৺࣬ױʢ$)%ʣ $2 ঁੑʹ͓͚Δ$)%ͷϦεΫ
ྫɿ0EETSBUJP 03 12 Male Female With CHD 40 20 Without
CHD 60 80 Total 100 100 40/100 60/100 = 40 60 = 0.67 20/100 80/100 = 20 80 = 0.25 Կഒʁ 0.67 0.25 = 2.7 Φοζൺղऍͮ͠Β͍ ੑผ ףಈ຺৺࣬ױʢ$)%ʣ $2 உੑʹ͓͚Δ$)%ͷΦοζ Φοζൺʢ0EET3BUJPʣ ঁੑʹର͢Δஉੑͷ$)%ͷΦοζൺ ঁੑʹ͓͚Δ$)%ͷΦοζ
ϦεΫൺͱΦοζൺ 13 • Φοζൺղऍͮ͠Β͍ • ؔ࿈ͷํੑϦεΫൺͱಉ͡ • رগ࣬ױͰ͋ΔͳΒɼΦοζൺϦεΫൺʹۙࣅͰ͖Δ Male Female
With CHD 20 40 Without CHD 80 60 Male Female With CHD 50 50 Without CHD 50 50 Male Female With CHD 40 20 Without CHD 60 80 33 03 33 03 33 03 33 03
5BLF)PNFNFTTBHF 14 w ؔ࿈ͷࢦඪʹɼओʹϦεΫࠩɼϦεΫൺɼΦοζൺɼ͓Αͼൃ ੜൺ͕͋Δ w ϦεΫൺͱΦοζൺࣅ͍ͯΔ͚ΕͲҧ͏
ࢀߟจݙ 3PUINBO ,+ (SFFOMBOE 4 -BTI 5- .PEFSOFQJEFNJPMPHZ
7PM 1IJMBEFMQIJB8PMUFST,MVXFS)FBMUI-JQQJODPUU8JMMJBNT8JMLJOT w Ӹֶʹ͍ͭͯ·ͱ·͍ͬͯΔɽҼՌਪʹॏ৺Λஔ͘ςΩετɽղɽ 3PUINBO ,+ ϩεϚϯͷӸֶՊֶతࢥߟͷ༠ࣰ͍ݪग़൛ࣾ w ΑΓ؆୯ͳ༰ +PIO .- "EJDUJPOBSZPGFQJEFNJPMPHZ0YGPSE6OJWFSTJUZ1SFTT w ࣙॻ͔ͩΒͦ͜ɼͱͯಡΈ͍͢ӳޠͰӸֶ༻ޠΛઆ໌͍ͯ͠Δ ୮ޙढ़࿕ দҪໜ೭ ৽൛ҩֶ౷ܭֶϋϯυϒοΫேॻళ ୮ޙढ़࿕ খఃଇ ҩֶ౷ܭֶͷࣄయேॻళ 15
16 $IVOUBSPͷ౷ܭɾӸֶνϟϯωϧ IUUQTXXXZPVUVCFDPNDIBOOFM 6$L8+QMZ4JLF4E.5M$G$L,+2