Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
データ分析キホンのキ - 初心者が陥りやすい5つの罠 - / 5trap
silvers
March 08, 2016
Business
1
580
データ分析キホンのキ - 初心者が陥りやすい5つの罠 - / 5trap
2013年に社内向けに作った資料。
発表し忘れていたので日付だけ修正して発表した。
silvers
March 08, 2016
Tweet
Share
More Decks by silvers
See All by silvers
"ふりかえり会" の第一歩 / The first step to retrospective.
silvers
4
1.3k
とある企業のプロダクトマネジメント教室 / pmjp-5
silvers
4
2k
エンジニアの育成について / engineer training
silvers
0
110
こんなチームになると良いなあ
silvers
34
3.1k
Other Decks in Business
See All in Business
X Mile会社紹介資料
xmile
PRO
2
100k
HighClass提案資料
highclass08
0
460
PingCAP / TiDB 概要資料
sinasina
0
170
マイクロソフトビジネスアプリケーション漫談-鰤会議2023編
ryoheig0405
0
190
オープンワーク会社紹介資料 / company profile
openwork
1
220k
SWOT Bot - Electronic Arts
swotbot
0
470
KPIマネジメントの重要指標の決め方がわかる資料
nyattx
PRO
1
460
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become a ML Engineer
shinyorke
5
6.4k
エンジニア向けオープンワーク会社紹介資料 / company profile
openwork
1
7.8k
プロジェクトを成功させる、初心者向けディレクション7つのこと ~あるあるな“困ったこと“の解決方法~
toksato
0
480
Nstock 採用資料 / We are hiring
nstock
7
24k
キャンつく インスタントウィン
pickles_staff
0
32k
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
10
1.3k
Clear Off the Table
cherdarchuk
79
290k
Adopting Sorbet at Scale
ufuk
65
7.8k
Unsuck your backbone
ammeep
659
56k
Product Roadmaps are Hard
iamctodd
38
7.7k
From Idea to $5000 a Month in 5 Months
shpigford
374
44k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
109
16k
Docker and Python
trallard
30
1.9k
For a Future-Friendly Web
brad_frost
166
7.8k
5 minutes of I Can Smell Your CMS
philhawksworth
198
18k
The Cult of Friendly URLs
andyhume
69
5.1k
Streamline your AJAX requests with AmplifyJS and jQuery
dougneiner
128
8.8k
Transcript
データ分析キホンのキ - 初心者が陥りやすい5つの罠 - 2016/03/08 silvers
概要 • よくある罠 • 周りではまってるのを見た罠 • 自分がはまりそうだった罠
5つの罠 • Trap1 無意味な統計 • Trap2 少ない標本 • Trap3 基準率の錯誤
• Trap4 隠された条件 • Trap5 分布を見ない
無意味な統計 Trap1
犯罪者のおよそ98% 2% 98% X Y
犯罪者のおよそ98% 2% 98% X Y パンを食べたことがある
犯罪者のおよそ98% 2% 98% X Y パンを食べたことがある 出典:パンは危険な食べ物
無意味にしないために • 対象でない群との比較をする必要がある • 犯罪者でない人のパンを食べる割合は? • それらの差を見る
少ない標本 Trap2
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう
2面サイコロ(コイン)を 投げてみましょう • 1が出やすい!
2面サイコロ(コイン)を 投げてみましょう • 1が出やすい! • …と言えるのかどうか
問1:効果あった? • ある施策を入れたら… • CASE1: 継続率が50%から90%になった! • CASE2: 継続率が50%から51%になった
問1:効果あった? • ある施策を入れたら… • CASE1: 10人中5人が10人中9人になった • CASE2: 10000人中5000人が10000人中5100人 になった
統計量検定 • 実験結果 • 10回中7回1が出た • 帰無仮説 • サイコロに偏りはない •
有意水準(危険率) • 5%(0.05) 0.00 0.08 0.15 0.23 0.30 0 1 2 3 4 5 6 7 8 9 10 ֬
問1のヒント • 対応のない2郡の母比率の差 • 帰無仮説:2郡に差がない!
基準率の錯誤 Trap3
問2: 架空のテロリスト判別装置 • 99%の精度で正しい判断が下せる • テロリストを「テロリストである」と判別できる • テロリストでない人を「テロリストでない」と判 別できる •
ある人物が「テロリストである」と判別されたとき どれぐらい信じられる?
問2のヒント
問2のヒント • 人口100万人中、テロリストは100人いる
問2のヒント • 人口100万人中、テロリストは100人いる • 100人のうち99人をテロリストと判断する
問2のヒント • 人口100万人中、テロリストは100人いる • 100人のうち99人をテロリストと判断する • 999,900人のうち、9,999人をテロリストとして判断 する
問2のヒント • 人口100万人中、テロリストは100人いる • 100人のうち99人をテロリストと判断する • 999,900人のうち、9,999人をテロリストとして判断 する • 10,098人中99人が正しいテロリスト
基準率 • 調査対象となっているもののうち、真に有効であるも のの割合 • テロリストが真になる可能性は、検定された仮説が真 である比率に依存する • 有意水準よりも偽陽性が多いことがある
隠された条件 Trap4
ありがとうの効果 • ビニールハウスを借りて、育て方の違いで成長に差が あるかを調べた • 右半分の棟には「ありがとう」と言って育て • 左半分の棟には「このやろう」と言って育てた • ありがとうのほうがおいしく育った
• 「ありがとう」に効果はあったか?
隠された条件 • 右側で育てた場合と左側で育てた場合 • 右半分のほうがおいしく育った
擬似反復 • 1000人から1000のデータを集める • 100人から10回ずつ1000のデータを集める • 個体差 • 同じデータを何度もとっているだけかもしれない
分布を見ない Trap5
所得の平均
所得の平均 556万円
所得の平均 556万円 意外と高い!
所得の分布 ग़యɿްੜ࿑ಇল ฏ20ࠃຽੜ׆جૅௐࠪͷ֓گ
分布を見る • 分布を見るのが一番良いが、 • いくつかの値を見るだけでも、だいたいの全体像が 見える • 平均値(算術平均):合計値を数で割った値 • 中央値:順番に並べたときの真ん中の値
• 最頻値:一番多い値
おわり まだ見ぬ罠があなたを待っている――