Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RDB anti-pattern that Java engineer wants to know
Search
soudai sone
PRO
May 20, 2017
Technology
6
11k
RDB anti-pattern that Java engineer wants to know
JJUG CCC 2017 spring での登壇資料です。
http://www.java-users.jp/ccc2017spring/
soudai sone
PRO
May 20, 2017
Tweet
Share
More Decks by soudai sone
See All by soudai sone
コミュニティと計画的偶発性理論 - 出会いが人生を変える / Life-Changing Encounters
soudai
PRO
7
1.7k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
36k
変化に強いテーブル設計の勘所 / Table design that is resistant to changes
soudai
PRO
67
19k
抽象化をするということ - 具体と抽象の往復を身につける / Abstraction and concretization
soudai
PRO
50
25k
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
PRO
38
34k
ソフトウェアエンジニアとしてキャリアの螺旋を駆け上がる方法 - 経験と出会いが人生を変える / Career-Anchor-Drive
soudai
PRO
20
6.8k
新婚19年目から学ぶ夫婦円満の正しい歩き方 / Life is beautiful
soudai
PRO
12
4.8k
顧客が本当に必要だったもの - パフォーマンス改善編 / Make what is needed
soudai
PRO
35
14k
仕事を前に進めるためのコツ - 判断と決断と共有 / Aim for the goal
soudai
PRO
101
75k
Other Decks in Technology
See All in Technology
CLIPでマルチモーダル画像検索 →とても良い
wm3
2
800
短期間でRAGシステムを実現 お客様と歩んだ生成AI内製化への道のり
taka0709
1
190
OPENLOGI Company Profile for engineer
hr01
1
46k
Data Engineering Guide 2025 #data_summit_findy by @Kazaneya_PR / 20251106
kazaneya
PRO
7
1.3k
20251102 WordCamp Kansai 2025
chiilog
1
540
AIエージェントによる業務効率化への飽くなき挑戦-AWS上の実開発事例から学んだ効果、現実そしてギャップ-
nasuvitz
5
1.6k
Giving Tuesday Auctria Set-Up 2025
auctria
PRO
0
100
ざっくり学ぶ 『エンジニアリングリーダー 技術組織を育てるリーダーシップと セルフマネジメント』 / 50 minute Engineering Leader
iwashi86
9
4.4k
DMARCは導入したんだけど・・・現場のつぶやき 〜 BIMI?何それ美味しいの?
hirachan
1
160
組織全員で向き合うAI Readyなデータ利活用
gappy50
5
2.1k
AIエージェントを導入する [ 社内ナレッジ活用編 ] / Implement AI agents
glidenote
1
210
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
370
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
720
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Become a Pro
speakerdeck
PRO
29
5.6k
Building an army of robots
kneath
306
46k
Documentation Writing (for coders)
carmenintech
76
5.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Practical Orchestrator
shlominoach
190
11k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
JavaΤϯδχΞʹͬͯ΄͍͠ RDBΞϯνύλʔϯ ++6($$$4QSJOH
What is it? ࠓΈͳ͞Μʹ࣋ͬͯؼͬͯ΄͍͜͠ͱ
What is it? σʔλϕʔεͷण໋ ΞϓϦέʔγϣϯΑΓ͍
What is it? ͦΜͳ͍͖߹͍ʹͳΔσʔλϕʔε ͷେͳࣄΛ͓͑͠·͢
What is it? ରͷσʔλϕʔειϑτΣΞ
What is it? PostgreSQL 9.6ͱMySQL 5.7(InnoDB)ʹݶΔ ଞͷRDBͷ͠·ͤΜ
What is it? RDBΞϯνύλʔϯ
What is it? RDBΞϯνύλʔϯ ↓ ޙʑʹۤ͠ΈΛੜΉ
What is it? RDBΞϯνύλʔϯΛΔ
What is it? RDBΞϯνύλʔϯΛΔ ↓ ಉ͡աͪΛ܁Γฦ͞ͳ͍
What is it? ࠓRDBͷࣦഊྫΛ͝հ͠·͢
͋͐͡Μͩ ̍ɹࣗݾհ ̎ɹσʔλϕʔεͷ໎ٶ ̏ɹڧ͗͢Δ੍ ̐ɹࢹ͞Εͳ͍σʔλϕʔε ̑ɹ·ͱΊ
͋͐͡Μͩ ̍ɹࣗݾհ ̎ɹσʔλϕʔεͷ໎ٶ ̏ɹڧ͗͢Δ੍ ̐ɹࢹ͞Εͳ͍σʔλϕʔε ̑ɹ·ͱΊ
ࣗݾհ ໊લɿીࠜɹେʢͦͶɹ͚ͨͱʣ ྸɿ32ࡀʢࡾਓͷࢠڙ͕͍·͢ʣ ৬ۀɿηʔϧεΤϯδχΞ ॴଐɿגࣜձࣾ ͯͳʢMackerelνʔϜʣ ɹɹɹຊPostgreSQLϢʔβձ ɹɹɹɹɹதࠃࢧ෦ ࢧ෦ ɹɹٕज़తʹLLܥݴޠͱ͔RDB͕͖Ͱ͢
ࣗݾհ ໊લɿીࠜɹେʢͦͶɹ͚ͨͱʣ ྸɿ32ࡀʢࡾਓͷࢠڙ͕͍·͢ʣ ৬ۀɿηʔϧεΤϯδχΞ ॴଐɿגࣜձࣾ ͯͳʢMackerelνʔϜʣ ɹɹɹຊPostgreSQLϢʔβձ ɹɹɹɹɹதࠃࢧ෦ ࢧ෦ ɹɹٕज़తʹLLܥݴޠͱ͔RDB͕͖Ͱ͢
Mackerel
Mackerel
ͯͳؒΛ୳ͯ͠·͢ curl -sIL mackerel.io | grep engineer
ࣗݾհ ໊લɿીࠜɹେʢͦͶɹ͚ͨͱʣ ྸɿ32ࡀʢࡾਓͷࢠڙ͕͍·͢ʣ ৬ۀɿηʔϧεΤϯδχΞ ॴଐɿגࣜձࣾ ͯͳʢMackerelνʔϜʣ ɹɹɹຊPostgreSQLϢʔβձ ɹɹɹɹɹதࠃࢧ෦ ࢧ෦ ɹɹٕज़తʹLLܥݴޠͱ͔RDB͕͖Ͱ͢
͋͐͡Μͩ ̍ɹࣗݾհ ̎ɹσʔλϕʔεͷ໎ٶ ̏ɹڧ͗͢Δ੍ ̐ɹࢹ͞Εͳ͍σʔλϕʔε ̑ɹ·ͱΊ
None
σʔλϕʔεͷ໎ٶ 4PGUXBSF%FTJHOΛಡΜͰ͘Εʂʂ Ҏ্οʂʂʂʂ
σʔλϕʔεͷ໎ٶ σʔλϕʔεͷઃܭͷ
σʔλϕʔεͷ໎ٶ demo=# SELECT delete_falg AS delete_flag FROM users GROUP BY
delete_flag delete_flag ------------- 1 2 0 9 99 NULL (6 ߦ)
σʔλϕʔεͷ໎ٶ ▪༷ॻ_20170513(1).xls 0: ະআ 1: আࡁΈ 2: ཧऀʹΑΔڧ੍আ 9: ຣফ
99: Α͘Θ͔Βͳ͍ NULL: όάͰೖΔ
σʔλϕʔεͷ໎ٶ NFNP NFNP NFNP
σʔλϕʔεͷ໎ٶ NFNP NFNP NFNP NFNPͰͳ͘NFNPͷͱ͜Ζ͕ྺ࢙Λײͤ͡͞Δ
σʔλϕʔεͷ໎ٶ σʔλϕʔεͷ໎ٶͷ
σʔλϕʔεͷ໎ٶ w ෆదͳ໊લͰσʔλϕʔεͷςʔϒϧͷؔ࿈ੑ ҙਤ͕ཧղͰ͖ͳ͍ w ϦϨʔγϣφϧϞσϧΛج͍ͮͨઃܭ͍ͯ͠ͳ͍ͱ طଘͷศརͳπʔϧΛར༻ग़དྷͳ͍ w อଘ͞Εͨσʔλ͕ਖ਼͍͔͠Ͳ͏͔͕அग़དྷͳ͍ w
ͲͷΑ͏ͳσʔλΛอଘ͠ɺͲͷΑ͏ͳσʔλΛ औΓग़͍͍͔ͤΘ͔Βͳ͍
σʔλϕʔεͷ໎ٶ w ෆదͳ໊લͰσʔλϕʔεͷςʔϒϧͷؔ࿈ੑ ҙਤ͕ཧղͰ͖ͳ͍ w ϦϨʔγϣφϧϞσϧΛج͍ͮͨઃܭ͍ͯ͠ͳ͍ͱ طଘͷศརͳπʔϧΛར༻ग़དྷͳ͍ w อଘ͞Εͨσʔλ͕ਖ਼͍͔͠Ͳ͏͔͕அग़དྷͳ͍ w
ͲͷΑ͏ͳσʔλΛอଘ͠ɺͲͷΑ͏ͳσʔλΛ औΓग़͍͍͔ͤΘ͔Βͳ͍
σʔλϕʔεͷ໎ٶ w ෆదͳ໊લͰσʔλϕʔεͷςʔϒϧͷؔ࿈ੑ ҙਤ͕ཧղͰ͖ͳ͍ w ϦϨʔγϣφϧϞσϧΛج͍ͮͨઃܭ͍ͯ͠ͳ͍ͱ طଘͷศརͳπʔϧΛར༻ग़དྷͳ͍ w อଘ͞Εͨσʔλ͕ਖ਼͍͔͠Ͳ͏͔͕அग़དྷͳ͍ w
ͲͷΑ͏ͳσʔλΛอଘ͠ɺͲͷΑ͏ͳσʔλΛ औΓग़͍͍͔ͤΘ͔Βͳ͍
σʔλϕʔεͷ໎ٶ w ෆదͳ໊લͰσʔλϕʔεͷςʔϒϧͷؔ࿈ੑ ҙਤ͕ཧղͰ͖ͳ͍ w ϦϨʔγϣφϧϞσϧΛج͍ͮͨઃܭ͍ͯ͠ͳ͍ͱ طଘͷศརͳπʔϧΛར༻ग़དྷͳ͍ w อଘ͞Εͨσʔλ͕ਖ਼͍͔͠Ͳ͏͔͕அग़དྷͳ͍ w
ͲͷΑ͏ͳσʔλΛอଘ͠ɺͲͷΑ͏ͳσʔλΛ औΓग़͍͍͔ͤΘ͔Βͳ͍
σʔλϕʔεͷ໎ٶ w ෆదͳ໊લͰσʔλϕʔεͷςʔϒϧͷؔ࿈ੑ ҙਤ͕ཧղͰ͖ͳ͍ w ϦϨʔγϣφϧϞσϧΛج͍ͮͨઃܭ͍ͯ͠ͳ͍ͱ طଘͷศརͳπʔϧΛར༻ग़དྷͳ͍ w อଘ͞Εͨσʔλ͕ਖ਼͍͔͠Ͳ͏͔͕அग़དྷͳ͍ w
ͲͷΑ͏ͳσʔλΛอଘ͠ɺͲͷΑ͏ͳσʔλΛ औΓग़͍͍͔ͤΘ͔Βͳ͍
σʔλϕʔεͷ໎ٶ ཧ*%
σʔλϕʔεͷ໎ٶ ཧ*% ˣ ձһ*%Λྫʹ͠·͢
σʔλϕʔεͷ໎ٶ
σʔλϕʔεͷ໎ٶ ͔Β࢝·ΔͷҰൠϢʔβ ͔Β࢝·ΔͷཧϢʔβ
σʔλϕʔεͷ໎ٶ ϢʔβͷಓݝΛද͢
σʔλϕʔεͷ໎ٶ ຊͷձһ*%
σʔλϕʔεͷ໎ٶ σʔλʹϩδοΫΛຒΊࠐΉͳͬʂ
σʔλϕʔεͷ໎ٶ σʔλʹϩδοΫΛຒΊࠐΉͳͬʂ ˣ σʔλΛσʔλͱͯ͠ಡΈऔΕͳ͍
σʔλϕʔεͷ໎ٶ ॲํᝦ w ΧϥϜΛਖ਼໊͘͠લΛ͚ͭΔ w σʔλͷΛ͚Δ w มԽʹ߹ΘͤͯϦϑΝΫλϦϯά͢Δ
σʔλϕʔεͷ໎ٶ ॲํᝦ w ΧϥϜΛਖ਼໊͘͠લΛ͚ͭΔ w σʔλͷΛ͚Δ w มԽʹ߹ΘͤͯϦϑΝΫλϦϯά͢Δ
σʔλϕʔεͷ໎ٶ ϦϑΝΫλϦϯάͷྫ
σʔλϕʔεͷ໎ٶ JE ໊લ ྸ ીࠜɹେ ીࠜɹኽָ
ીࠜɹᗅָ ીࠜɹࡣָ ݱঢ়
σʔλϕʔεͷ໎ٶ ձһJE ໊લ ྸ ݖݶJE ಓݝJE ીࠜɹେ
ીࠜɹኽָ ીࠜɹᗅָ ીࠜɹࡣָ ཧ
σʔλϕʔεͷ໎ٶ JE ձһJE ໊લ ྸ ݖݶJE ಓݝJE /6-- ીࠜɹେ
/6-- /6-- /6-- ીࠜɹኽָ /6-- /6-- /6-- ીࠜɹᗅָ /6-- /6-- /6-- ીࠜɹࡣָ /6-- /6-- ରͷΧϥϜΛՃ
σʔλϕʔεͷ໎ٶ JE ձһJE ໊લ ྸ ݖݶJE ಓݝJE ીࠜɹେ
ીࠜɹኽָ ીࠜɹᗅָ ીࠜɹࡣָ ରͷΧϥϜΛՃ
σʔλϕʔεͷ໎ٶ Ͳ͏ͬͯཧ*%Λ ৽͍͠ΧϥϜʹೖΕΔ͔
σʔλϕʔεͷ໎ٶ ϦϑΝΫλϦϯάख๏ͷྫ w */4&3561%"5&ͷ࣌ʹΞϓϦ͕ೖΕΔ w */4&3561%"5&ͷ࣌ʹτϦΨʔΛ͏ w Ծྻ7JFXΛ͏
σʔλϕʔεͷ໎ٶ ձһJE ໊લ ྸ ݖݶJE ಓݝJE ીࠜɹେ
ીࠜɹኽָ ીࠜɹᗅָ ીࠜɹࡣָ ཧͷ7JFXΛ࡞Δ
σʔλϕʔεͷ໎ٶ αʔϏεͷੑ࣭ʹ߹Θͤͯ ख๏ΛબͿ
͋͐͡Μͩ ̍ɹࣗݾհ ̎ɹσʔλϕʔεͷ໎ٶ ̏ɹڧ͗͢Δ੍ ̐ɹࢹ͞Εͳ͍σʔλϕʔε ̑ɹ·ͱΊ
ڧ͗͢Δ੍ σʔλϕʔε αʔϏεʹ༩͑ΔӨڹൣғ͕͍
ڧ͗͢Δ੍ ༩͑ΔӨڹൣғͷྫ w %#Λఀࢭ͢ΔͱαʔϏε͕ࢭ·Δ w มߋ͢ΔͱෳαʔϏεͷվम͕ඞཁ w σʔλৗʹੵ͞Ε͍ͯ͘
ڧ͗͢Δ੍ ࣌ؒܦաͰσʔλ͕͢Δ
ڧ͗͢Δ੍ ͭ·Γมߋ͕େม
ڧ͗͢Δ੍ ͭ·Γมߋ͕େม ˣ ͕࣌ؒܦͯܦͭ΄Ͳঢ়گ͕ѱԽ
ڧ͗͢Δ੍ ͔ͩΒͦ͜ਖ਼͍͠ઃܭʹҭͯΔ͖
ڧ͗͢Δ੍ ͦͷͨΊʹ3%#ͷػೳΛ׆༻͢Δ
ڧ͗͢Δ੍ ͦͷͨΊʹ3%#ͷػೳΛ׆༻͢Δ ˣ ͔ͦ͠͠Ε͕ཪʹग़Δ͜ͱ
ڧ͗͢Δ੍ 3%#ͷػೳʹґଘ͗͢͠Δͱ ͦΕڧ͗͢Δ੍ʹͳΔ
ڧ͗͢Δ੍ ڧ͗͢Δ੍ͷྫ w τϦΨʔ͕ଟ͘ͷ5"#-&ʹӨڹΛ༩͑Δ w ετΞυ͕ϩδοΫΛ࣋ͪ͗͢Δ w ϚςϏϡʔ%#-JOLͷଟ༻͗͢͠Δ
ڧ͗͢Δ੍ 3%#ͷػೳͱͯศར
ڧ͗͢Δ੍ 3%#ͷػೳͱͯศར ˣ ͔ۜ͠͠ͷؙͰͳ͍
ڧ͗͢Δ੍ ઃܭͷόϥϯεײ͕֮େࣄ
ڧ͗͢Δ੍ ॲํᝦ w ͦͷػೳΛར༻͢ΔظؒΛݕ౼͢Δ w ͦͷػೳͷӨڹൣғΛཧղ͢Δ w ຊʹ࠷దͳΞϓϩʔν͔͍͢
ڧ͗͢Δ੍ ॲํᝦ w ͦͷػೳΛར༻͢ΔظؒΛݕ౼͢Δ w ͦͷػೳͷӨڹൣғΛཧղ͢Δ w ຊʹ࠷దͳΞϓϩʔν͔͍͢
ڧ͗͢Δ੍ ਓաڈͷޭମݧͷ όΠΞε͕͔͔Δ
ڧ͗͢Δ੍ ਓաڈͷࣦഊମݧ όΠΞε͕͔͔Δ
ڧ͗͢Δ੍ ઃܭͷόϥϯεײ͕֮େࣄ
ڧ͗͢Δ੍ ઃܭͷόϥϯεײ͕֮େࣄ ˣ ଟ͘ͷઃܭΛݟͯཆ͏͜ͱ͕େࣄ
͋͐͡Μͩ ̍ɹࣗݾհ ̎ɹσʔλϕʔεͷ໎ٶ ̏ɹڧ͗͢Δ੍ ̐ɹࢹ͞Εͳ͍σʔλϕʔε ̑ɹ·ͱΊ
ࢹ͞Εͳ͍σʔλϕʔε ࢹͱϞχλϦϯά
ࢹ͞Εͳ͍σʔλϕʔε
ࢹ͞Εͳ͍σʔλϕʔε
ࢹ͞Εͳ͍σʔλϕʔε ͳΜͰςετॻ͘ͷʹ ϞχλϦϯά͠ͳ͍ΜͰ͔͢ʁ
ࢹ͞Εͳ͍σʔλϕʔε ࢹࡾஈ֊͋Δ
ࢹ͞Εͳ͍σʔλϕʔε w͍ͪૣ͘োൃੜΛ֬ೝ͢Δ w෮چͷͨΊͷݪҼΛ֬ೝ͢Δ wঢ়گͷมԽΛ࣌ܥྻͰࢹ͢Δ͜ͱͰ Ϧιʔεཧোͷ༧ஹͷѲ͢Δ
ࢹ͞Εͳ͍σʔλϕʔε w͍ͪૣ͘োൃੜΛ֬ೝ͢Δ w෮چͷͨΊͷݪҼΛ֬ೝ͢Δ wঢ়گͷมԽΛ࣌ܥྻͰࢹ͢Δ͜ͱͰ Ϧιʔεཧোͷ༧ஹͷѲ͢Δ ࢮ׆ࢹ
ࢹ͞Εͳ͍σʔλϕʔε w͍ͪૣ͘োൃੜΛ֬ೝ͢Δ w෮چͷͨΊͷݪҼΛ֬ೝ͢Δ wঢ়گͷมԽΛ࣌ܥྻͰࢹ͢Δ͜ͱͰ Ϧιʔεཧোͷ༧ஹͷѲ͢Δ νΣοΫࢹ
ࢹ͞Εͳ͍σʔλϕʔε w͍ͪૣ͘োൃੜΛ֬ೝ͢Δ w෮چͷͨΊͷݪҼΛ֬ೝ͢Δ wঢ়گͷมԽΛ࣌ܥྻͰࢹ͢Δ͜ͱͰ Ϧιʔεཧোͷ༧ஹͷѲ͢Δ ϞχλϦϯάࢹ
ࢹ͞Εͳ͍σʔλϕʔε
ࢹ͞Εͳ͍σʔλϕʔε
ࢹ͞Εͳ͍σʔλϕʔε Πϯϑϥੜ͖
ࢹ͞Εͳ͍σʔλϕʔε Πϯϑϥੜ͖ ˣ ʑͷهΛݟΔ
ࢹ͞Εͳ͍σʔλϕʔε աڈΛΔ͜ͱͰ ࠓͷॴ͕Θ͔Δ
ࢹ͞Εͳ͍σʔλϕʔε ࠓͱաڈͷࠩ
ࢹ͞Εͳ͍σʔλϕʔε ࠓͱաڈͷࠩ ˣ ະདྷΛΔͨΊͷࡐྉ
ࢹ͞Εͳ͍σʔλϕʔε ࢹ͖߲͢ w ౷ܭใ04ϦιʔεͳͲ3%#ͷঢ়ଶ w εϩʔΫΤϦϩάΤϥʔϩάͳͲ w ෳͷ%#ΛॏͶͨൺֱ
ࢹ͞Εͳ͍σʔλϕʔε ϞχλϦϯάվળͷҰา
ࢹ͞Εͳ͍σʔλϕʔε ॲํᝦ w దʹϞχλϦϯάΛ͢Δ w ϞχλϦϯάπʔϧΛ׆༻͢Δ w վળͷͨΊͷҰาΛ౿Έग़͢
͋͐͡Μͩ ̍ɹࣗݾհ ̎ɹσʔλϕʔεͷ໎ٶ ̏ɹڧ͗͢Δ੍ ̐ɹࢹ͞Εͳ͍σʔλϕʔε ̑ɹ·ͱΊ
·ͱΊ ۪ऀܦݧʹֶͿ ݡऀաڈʹֶͿ
·ͱΊ ΞϯνύλʔϯΛΔ
·ͱΊ
·ͱΊ SQLΞϯνύλʔϯݫબ͞Εࣦͨഊू
·ͱΊ SQLΞϯνύλʔϯݫબ͞Εࣦͨഊू ↓ DBͷϊϋ͕٧·໊ͬͨஶ
·ͱΊ Ұ࡞ͬͨ%#ফͤͳ͍
·ͱΊ Ұ࡞ͬͨ%#ফͤͳ͍ ˣ ઃܭ͕େࣄ
·ͱΊ σʔλϕʔεͷࢮαʔϏεͷࢮ
·ͱΊ σʔλϕʔεͷࢮαʔϏεͷࢮ ˣ ղܾͰ͖Δਓӳ༤
·ͱΊ %#ͷΕͨࠒʹͬͯ͘Δ
·ͱΊ
·ͱΊ αʔϏενʔϜΛकΔ
·ͱΊ αʔϏενʔϜΛकΔ ˣ ͦͷͨΊʹֶͿ
·ͱΊ पғͷܦݧஊ͔ΒֶͿ
·ͱΊ पғͷܦݧஊ͔ΒֶͿ ˣ ੵۃతʹίϛϡχςΟΛར༻͢Δ
ࢀߟࢿྉ ɾQPTUHSFTRMKQ4MBDL νϟοτϧʔϜ IUUQTQPTUHSFTRMIBDLFSTKQIFSPLVBQQDPN ɾNZTRMDBTVBM4MBDL νϟοτϧʔϜ IUUQTNZTRMDBTVBMTMBDLJOIFSPLVBQQDPN
·ͱΊ 3%#ͷࣝण໋͕͍
·ͱΊ 3%#ͷࣝण໋͕͍ ˣ ֮͑ΕࣄͰ͍ؒʹཱͭ
·ͱΊ lखΛಈ͔ͨ͠ਓ͚͕ͩੈքΛม͑Δz :BTVIJSP0OJTIJ
·ͱΊ ΑΓྑ͍ઃܭΛ Ұॹʹߟ͑ͯߦ͖·͠ΐ͏
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ɻ