Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Stochastic Gradient Boostingについて
Search
Shinichi Takayanagi
January 27, 2016
Research
3
2.9k
Stochastic Gradient Boostingについて
社内の論文読み会資料
Shinichi Takayanagi
January 27, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
論文紹介「Evaluation gaps in machine learning practice」と、効果検証入門に関する昔話
stakaya
0
1k
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
1.5k
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
570
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
2k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
650
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.2k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
370
Other Decks in Research
See All in Research
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
380
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
210
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
260
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
480
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
210
Featured
See All Featured
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
76
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
120
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
Site-Speed That Sticks
csswizardry
13
1.1k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
Abbi's Birthday
coloredviolet
1
4.8k
Designing for Timeless Needs
cassininazir
0
130
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
Test your architecture with Archunit
thirion
1
2.2k
Transcript
〜~論論⽂文輪輪読会〜~ Stochastic Gradient Boosting Jerome H. Friedman(1999) ⾼高柳柳慎⼀一
Whatʼ’s this? • 加法モデルの1つ – Gradient Boostingの拡張版 – モデルを学習させる際に”データをサンプリン グして使う(全部使わない)”というだけ • Gradient
Boostingの特徴 – モデル = 決定⽊木の⾜足しあげ – pseudoな誤差(損失関数の勾配)に対してモデ ルを当てはめる 2
まとめ • Stochastic Gradient Boosting = Gradient Boosting+標本サンプリング •
Gradient Boostingの特徴 – 最適化問題を⼆二段階に分けて解く • 第⼀一弾:勾配⽅方向になるような学習器を最適化計算 – データが有限なので厳密計算を諦めて近似 • 第⼆二弾:1を既存の学習器に追加する際の係数を最 適化 3
Gradient Boostingのモデル • モデルFはhという弱学習器の⾜足し上げ • 損失関数Ψを最⼩小化するように学習データ xから、βとhを決める 4
最適化計算 • 最適化はm=0から順に(stage-‐‑‒wise)決め ていく⽅方針を取る(これがいいという裏裏付 けはないっぽい) • F0を決めて、F1, F2, … FMと順に最適化
計算で決めていくということ 5
最適化計算のアイディア • 最適化計算を2ステップに分ける – aとβをばらばらにきめる • 第⼀一段階:勾配を学習器で近似(最適化) • 第⼆二段階:くっつけるときの係数を最適化 6
個々の学習器は回帰⽊木とする • 学習器 is 回帰⽊木 – 今までのaを{Rlm}と書いている – L個の終端ノードがある 7 1� 2…�
L� R1m R2m RLm 1:XΛͿͬ͜Ή 2:X͕Ϛον͢Δ RlmΛ୳͢ x͕RlmʹೖΔ yͷฏۉ
第⼀一段&第⼆二段の最適化 • 第⼀一段は普通にやれる • 第⼆二段は個々の終端ごとに最適化してOK – なぜならここの終端は独⽴立立/互いに素?なので – ∴並列列化できる! • これを今までの学習器に⾜足しこんで新しい 学習器とする
8
Gradient Boostingのアルゴリズム • アルゴリズムのまとめ 9
Stochastic Gradient Boostingのアルゴリズム • アルゴリズムのまとめ – データを全部使わない • (20%-‐‑‒50%程度度の使⽤用がふつうらしい) 10
なぜStochasticにするとよいのか? • 論論⽂文を読む限り・・・ – サンプリングで学習に使うデータが異異なる – 学習器間の相関が減る – ⼀一⽅方 • 全体の分散≒sum(個々の分散) + sum(相関) と書ける
– 相関が減るおかげで全体の分散が減る – Bias-‐‑‒Variance的に考えて汎化性能があがる 11