Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Stochastic Gradient Boostingについて
Search
Shinichi Takayanagi
January 27, 2016
Research
3
2.9k
Stochastic Gradient Boostingについて
社内の論文読み会資料
Shinichi Takayanagi
January 27, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
論文紹介「Evaluation gaps in machine learning practice」と、効果検証入門に関する昔話
stakaya
0
990
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
1.4k
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
560
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
2k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
640
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.2k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
360
Other Decks in Research
See All in Research
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
100
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
230
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
140
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
230
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
230
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
600
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
12
6.5k
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
0
300
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
2
120
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
730
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
460
Featured
See All Featured
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
410
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
110
Writing Fast Ruby
sferik
630
62k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
100
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
45
The untapped power of vector embeddings
frankvandijk
1
1.5k
We Have a Design System, Now What?
morganepeng
54
7.9k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
190
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
320
How Software Deployment tools have changed in the past 20 years
geshan
0
30k
Transcript
〜~論論⽂文輪輪読会〜~ Stochastic Gradient Boosting Jerome H. Friedman(1999) ⾼高柳柳慎⼀一
Whatʼ’s this? • 加法モデルの1つ – Gradient Boostingの拡張版 – モデルを学習させる際に”データをサンプリン グして使う(全部使わない)”というだけ • Gradient
Boostingの特徴 – モデル = 決定⽊木の⾜足しあげ – pseudoな誤差(損失関数の勾配)に対してモデ ルを当てはめる 2
まとめ • Stochastic Gradient Boosting = Gradient Boosting+標本サンプリング •
Gradient Boostingの特徴 – 最適化問題を⼆二段階に分けて解く • 第⼀一弾:勾配⽅方向になるような学習器を最適化計算 – データが有限なので厳密計算を諦めて近似 • 第⼆二弾:1を既存の学習器に追加する際の係数を最 適化 3
Gradient Boostingのモデル • モデルFはhという弱学習器の⾜足し上げ • 損失関数Ψを最⼩小化するように学習データ xから、βとhを決める 4
最適化計算 • 最適化はm=0から順に(stage-‐‑‒wise)決め ていく⽅方針を取る(これがいいという裏裏付 けはないっぽい) • F0を決めて、F1, F2, … FMと順に最適化
計算で決めていくということ 5
最適化計算のアイディア • 最適化計算を2ステップに分ける – aとβをばらばらにきめる • 第⼀一段階:勾配を学習器で近似(最適化) • 第⼆二段階:くっつけるときの係数を最適化 6
個々の学習器は回帰⽊木とする • 学習器 is 回帰⽊木 – 今までのaを{Rlm}と書いている – L個の終端ノードがある 7 1� 2…�
L� R1m R2m RLm 1:XΛͿͬ͜Ή 2:X͕Ϛον͢Δ RlmΛ୳͢ x͕RlmʹೖΔ yͷฏۉ
第⼀一段&第⼆二段の最適化 • 第⼀一段は普通にやれる • 第⼆二段は個々の終端ごとに最適化してOK – なぜならここの終端は独⽴立立/互いに素?なので – ∴並列列化できる! • これを今までの学習器に⾜足しこんで新しい 学習器とする
8
Gradient Boostingのアルゴリズム • アルゴリズムのまとめ 9
Stochastic Gradient Boostingのアルゴリズム • アルゴリズムのまとめ – データを全部使わない • (20%-‐‑‒50%程度度の使⽤用がふつうらしい) 10
なぜStochasticにするとよいのか? • 論論⽂文を読む限り・・・ – サンプリングで学習に使うデータが異異なる – 学習器間の相関が減る – ⼀一⽅方 • 全体の分散≒sum(個々の分散) + sum(相関) と書ける
– 相関が減るおかげで全体の分散が減る – Bias-‐‑‒Variance的に考えて汎化性能があがる 11