Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Stochastic Gradient Boostingについて
Search
Shinichi Takayanagi
January 27, 2016
Research
3
2.9k
Stochastic Gradient Boostingについて
社内の論文読み会資料
Shinichi Takayanagi
January 27, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
論文紹介「Evaluation gaps in machine learning practice」と、効果検証入門に関する昔話
stakaya
0
1k
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
1.5k
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
570
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
2k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
650
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.2k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
370
Other Decks in Research
See All in Research
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
270
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
6
3.1k
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
470
Remote sensing × Multi-modal meta survey
satai
4
710
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
LLMアプリケーションの透明性について
fufufukakaka
0
130
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
610
R&Dチームを起ち上げる
shibuiwilliam
1
150
存立危機事態の再検討
jimboken
0
240
LiDARセキュリティ最前線(2025年)
kentaroy47
0
130
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
590
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
Featured
See All Featured
The Curse of the Amulet
leimatthew05
1
8.6k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
940
BBQ
matthewcrist
89
10k
Design in an AI World
tapps
0
140
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Balancing Empowerment & Direction
lara
5
890
Everyday Curiosity
cassininazir
0
130
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
How STYLIGHT went responsive
nonsquared
100
6k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
76
Crafting Experiences
bethany
1
49
Un-Boring Meetings
codingconduct
0
200
Transcript
〜~論論⽂文輪輪読会〜~ Stochastic Gradient Boosting Jerome H. Friedman(1999) ⾼高柳柳慎⼀一
Whatʼ’s this? • 加法モデルの1つ – Gradient Boostingの拡張版 – モデルを学習させる際に”データをサンプリン グして使う(全部使わない)”というだけ • Gradient
Boostingの特徴 – モデル = 決定⽊木の⾜足しあげ – pseudoな誤差(損失関数の勾配)に対してモデ ルを当てはめる 2
まとめ • Stochastic Gradient Boosting = Gradient Boosting+標本サンプリング •
Gradient Boostingの特徴 – 最適化問題を⼆二段階に分けて解く • 第⼀一弾:勾配⽅方向になるような学習器を最適化計算 – データが有限なので厳密計算を諦めて近似 • 第⼆二弾:1を既存の学習器に追加する際の係数を最 適化 3
Gradient Boostingのモデル • モデルFはhという弱学習器の⾜足し上げ • 損失関数Ψを最⼩小化するように学習データ xから、βとhを決める 4
最適化計算 • 最適化はm=0から順に(stage-‐‑‒wise)決め ていく⽅方針を取る(これがいいという裏裏付 けはないっぽい) • F0を決めて、F1, F2, … FMと順に最適化
計算で決めていくということ 5
最適化計算のアイディア • 最適化計算を2ステップに分ける – aとβをばらばらにきめる • 第⼀一段階:勾配を学習器で近似(最適化) • 第⼆二段階:くっつけるときの係数を最適化 6
個々の学習器は回帰⽊木とする • 学習器 is 回帰⽊木 – 今までのaを{Rlm}と書いている – L個の終端ノードがある 7 1� 2…�
L� R1m R2m RLm 1:XΛͿͬ͜Ή 2:X͕Ϛον͢Δ RlmΛ୳͢ x͕RlmʹೖΔ yͷฏۉ
第⼀一段&第⼆二段の最適化 • 第⼀一段は普通にやれる • 第⼆二段は個々の終端ごとに最適化してOK – なぜならここの終端は独⽴立立/互いに素?なので – ∴並列列化できる! • これを今までの学習器に⾜足しこんで新しい 学習器とする
8
Gradient Boostingのアルゴリズム • アルゴリズムのまとめ 9
Stochastic Gradient Boostingのアルゴリズム • アルゴリズムのまとめ – データを全部使わない • (20%-‐‑‒50%程度度の使⽤用がふつうらしい) 10
なぜStochasticにするとよいのか? • 論論⽂文を読む限り・・・ – サンプリングで学習に使うデータが異異なる – 学習器間の相関が減る – ⼀一⽅方 • 全体の分散≒sum(個々の分散) + sum(相関) と書ける
– 相関が減るおかげで全体の分散が減る – Bias-‐‑‒Variance的に考えて汎化性能があがる 11