Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Stochastic Gradient Boostingについて
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Shinichi Takayanagi
January 27, 2016
Research
3
2.9k
Stochastic Gradient Boostingについて
社内の論文読み会資料
Shinichi Takayanagi
January 27, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
論文紹介「Evaluation gaps in machine learning practice」と、効果検証入門に関する昔話
stakaya
0
1k
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
1.5k
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
570
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
2k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
650
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.2k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
370
Other Decks in Research
See All in Research
LiDARセキュリティ最前線(2025年)
kentaroy47
0
130
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
610
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
6
3.1k
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
説明可能な機械学習と数理最適化
kelicht
2
930
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
270
20年前に50代だった人たちの今
hysmrk
0
140
CoRL2025速報
rpc
4
4.2k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
620
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Google's AI Overviews - The New Search
badams
0
910
Documentation Writing (for coders)
carmenintech
77
5.3k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Technical Leadership for Architectural Decision Making
baasie
1
240
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
82
The Language of Interfaces
destraynor
162
26k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Transcript
〜~論論⽂文輪輪読会〜~ Stochastic Gradient Boosting Jerome H. Friedman(1999) ⾼高柳柳慎⼀一
Whatʼ’s this? • 加法モデルの1つ – Gradient Boostingの拡張版 – モデルを学習させる際に”データをサンプリン グして使う(全部使わない)”というだけ • Gradient
Boostingの特徴 – モデル = 決定⽊木の⾜足しあげ – pseudoな誤差(損失関数の勾配)に対してモデ ルを当てはめる 2
まとめ • Stochastic Gradient Boosting = Gradient Boosting+標本サンプリング •
Gradient Boostingの特徴 – 最適化問題を⼆二段階に分けて解く • 第⼀一弾:勾配⽅方向になるような学習器を最適化計算 – データが有限なので厳密計算を諦めて近似 • 第⼆二弾:1を既存の学習器に追加する際の係数を最 適化 3
Gradient Boostingのモデル • モデルFはhという弱学習器の⾜足し上げ • 損失関数Ψを最⼩小化するように学習データ xから、βとhを決める 4
最適化計算 • 最適化はm=0から順に(stage-‐‑‒wise)決め ていく⽅方針を取る(これがいいという裏裏付 けはないっぽい) • F0を決めて、F1, F2, … FMと順に最適化
計算で決めていくということ 5
最適化計算のアイディア • 最適化計算を2ステップに分ける – aとβをばらばらにきめる • 第⼀一段階:勾配を学習器で近似(最適化) • 第⼆二段階:くっつけるときの係数を最適化 6
個々の学習器は回帰⽊木とする • 学習器 is 回帰⽊木 – 今までのaを{Rlm}と書いている – L個の終端ノードがある 7 1� 2…�
L� R1m R2m RLm 1:XΛͿͬ͜Ή 2:X͕Ϛον͢Δ RlmΛ୳͢ x͕RlmʹೖΔ yͷฏۉ
第⼀一段&第⼆二段の最適化 • 第⼀一段は普通にやれる • 第⼆二段は個々の終端ごとに最適化してOK – なぜならここの終端は独⽴立立/互いに素?なので – ∴並列列化できる! • これを今までの学習器に⾜足しこんで新しい 学習器とする
8
Gradient Boostingのアルゴリズム • アルゴリズムのまとめ 9
Stochastic Gradient Boostingのアルゴリズム • アルゴリズムのまとめ – データを全部使わない • (20%-‐‑‒50%程度度の使⽤用がふつうらしい) 10
なぜStochasticにするとよいのか? • 論論⽂文を読む限り・・・ – サンプリングで学習に使うデータが異異なる – 学習器間の相関が減る – ⼀一⽅方 • 全体の分散≒sum(個々の分散) + sum(相関) と書ける
– 相関が減るおかげで全体の分散が減る – Bias-‐‑‒Variance的に考えて汎化性能があがる 11