Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データの可視化ワークショップ #3 - ばらつきと相関の可視化
Search
Takato Shiroto
July 02, 2020
Technology
0
940
データの可視化ワークショップ #3 - ばらつきと相関の可視化
データの可視化ワークショップの第3弾のばらつきと相関の可視化で使用したスライドです。
Takato Shiroto
July 02, 2020
Tweet
Share
More Decks by Takato Shiroto
See All by Takato Shiroto
Exploratory v6.7の紹介
takatoshiroto
0
900
Exploratory v6.6の紹介
takatoshiroto
0
1.6k
Exploratory v6.5の紹介
takatoshiroto
0
5.1k
コンバージョン率と信頼区間の推移を可視化する方法
takatoshiroto
1
300
Exploratory Hour #104 - 別の列の値をもとに、カテゴリー列の値の順序を指定したい
takatoshiroto
0
180
Exploratory Hour #105 - 元のデータ順をもとに、カテゴリー列の値の順序を指定したい
takatoshiroto
1
240
Exploratory Hour #102 - complete関数を使って2つの時間の間の値を生成したい
takatoshiroto
0
100
Exploratory Hour #103 - 仕事の開始・終了時間データから、どの時間に何人働いているか知りたい
takatoshiroto
0
99
Exploratory v6.4の紹介
takatoshiroto
0
5.8k
Other Decks in Technology
See All in Technology
Microsoft Ignite 2024 最新情報!Microsoft 365 Agents SDK 概要 / Microsoft Ignite 2024 latest news Microsoft 365 Agents SDK overview
karamem0
0
190
信頼性を支えるテレメトリーパイプラインの構築 / Building Telemetry Pipeline with OpenTelemetry
ymotongpoo
9
5k
一人から始めたSREチーム3年の歩み - 求められるスキルの変化とチームのあり方 - / The three-year journey of the SRE team, which started all by myself
vtryo
7
5.7k
CloudWatch Container Insightsを使ったAmazon ECSのリソース監視
umekou
1
120
AWSエンジニアに捧ぐLangChainの歩き方
tsukuboshi
0
220
レイクハウスとはなんだったのか?
akuwano
15
2k
論文紹介 ”Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG” @GDG Tokyo
shukob
0
280
ChatGPTを使ったブログ執筆と校正の実践テクニック/登壇資料(井田 献一朗)
hacobu
1
160
Bounded Context: Problem or Solution?
ewolff
1
100
20250125_Agent for Amazon Bedrock試してみた
riz3f7
2
110
Power BI は、レポート テーマにこだわろう!テーマのティア表付き
ohata_ds
0
120
extensionとschema
yahonda
1
100
Featured
See All Featured
Building Adaptive Systems
keathley
39
2.4k
The Language of Interfaces
destraynor
156
24k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
220
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Code Reviewing Like a Champion
maltzj
521
39k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Rails Girls Zürich Keynote
gr2m
94
13k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
YesSQL, Process and Tooling at Scale
rocio
171
14k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Transcript
EXPLORATORY σʔλͷՄࢹԽϫʔΫγϣοϓ #3 Β͖ͭͱ૬ؔͷՄࢹԽ
σʔλͷՄࢹԽϫʔΫγϣοϓ • ୈ1ճɿσʔλͷՄࢹԽ - جૅ • ୈ2ճɿ࣌ܥྻσʔλͷՄࢹԽ • ୈ3ճɿΒ͖ͭͱ૬ؔͷՄࢹԽ •
ୈ4ճɿෆ࣮֬ੑͷՄࢹԽ • ୈ5ճɿՄࢹԽͷͨΊͷσʔλϥϯάϦϯά
3 εϐʔΧʔ നށ ܟొ Customer Succes EXPLORATORY ུྺ େֶࡏֶதʹϑʔυϩεΛݮΒͨ͢ΊʹɺֶੜஂମΛ্ཱͪ͛දΛ ΊΔɻͦͷޙɺϏδωεΛΔͨΊʹԽֶϝʔΧʔͷσϡϙϯͱ
ϑʔυςοΫܥελʔτΞοϓͰӦۀͱϚʔέςΟϯάΛܦݧɻ ΞϓϦͷͷͨΊʹσʔλαΠΤϯε͕ඞཁͩͱײ͡ɺΞϓϦʹ ಛԽͨ͠ϢʔβʔͷߦಈੳπʔϧΛ։ൃ͢ΔاۀʹͯɺΞϓϦۀք ͷKPIੳͳͲΛ୲͢Δɻ ݱࡏExploratory, Inc. ͰΧελϚʔαΫηεΛ୲͢ΔΒɺσʔ λͷՄࢹԽͱ୳ࡧతσʔλੳΛઐͱͯ͠σʔλαΠΤϯεͷීٴ ʹऔΓΉɻ @ShirotoTakato
4 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
ࣄલ४උ 5
σʔλͷΠϯϙʔτ 6
7 αϯϓϧσʔλ ͜ͷΨΠυͰʮAirbnbͷ౦ژͷ॓ധࢪઃσʔλʯΛ͏ɻ
σʔλϑϨʔϜͷϓϥεϘλϯ( + )͔ΒσʔλɾΧλϩάΛબͿ 8
αʔνϘοΫεʹAirbnbͱೖྗͯ͠ݕࡧ͢Δ 9
σʔλͷใΛݟ͍ͨ߹։͘ϘλϯΛΫϦοΫ͢Δ 10
Metadataλϒ͔Βσʔλͷઆ໌Λ֬ೝͰ͖Δ 11
ΠϯϙʔτϘλϯΛΫϦοΫͯ͠σʔλΛΠϯϙʔτ͢Δ 12
อଘΛΫϦοΫ͢Δ 13
σʔλΛΠϯϙʔτ͢Δ͜ͱ͕Ͱ͖ͨ 14
༻͢Δओͳσʔλ 15
16 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
σʔλΒͭ͘ 17
18 12,000ԁ ฏۉ Ձ֨
19 σʔλΒ͍͍ͭͯΔɻ
ฏۉͷมԽʹහײͰ͋Δɻ ΄ΜͷҰѲΓͷۃʹߴ͍ɺ͍͘͠ʹΑͬ ͯฏۉେ͖͘ӨڹΛड͚Δɻ
21 ྫ͑ɺۃʹՁ͕֨ߴ͍॓ധࢪઃ͕͋ΔͱɺՁ֨ͷฏۉҾͬுΒΕͯ ͠·͏͜ͱ͕͋Δɻ
ूܭͷݶք • ͲΜͳ౷ܭɺͬͱෳࡶͳਅཧͷཁͰ͋Δ͜ͱΛܾͯ͠Εͯ ͍͚·ͤΜɻ • ฏۉͯ͢ΛޠΒͳ͍ɻͦΕ·ΔͰɺͷ͖͔ͧ݀Β෦ͷத Λݟ͍ͯΔΑ͏ͳͷͰ͋Δɻ (Sir Andrew Dilnot,
former chair of the UK Statistics Authority) 22
23 ฏۉ͚ͩΛΈ͍ͯΔͱཪʹ͋ΔΒ͖ͭΛݟಀͯ͠͠·͏ɻ
24 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
25 Β͖ͭͷՄࢹԽ
26 ώετάϥϜ ີۂઢ ശώήਤ
27 ώετάϥϜ ີۂઢ ശώήਤ
ώετάϥϜ Λ͍͔ͭ͘ͷ۠ըʹ͚ɺ ͦΕͧΕͷ۠ըʹ͋Δσʔλͷྔ(ߦͷ)Λ όʔͷߴ͞ͱͯ͠ද͢ɻ 28
1,000 1,500 2,200 2,500 3,000 6,500 7,100 2,200 3,800 4,500
2,200 5,300 3,400 4,200 5,200 5,800 8,100 9,000 7,800 29
1,000 1,500 3,000 6,500 7,100 2,200 3,800 4,500 5,300 3,400
4,200 5,200 5,800 8,100 7,800 30
price(Ձ֨) 0 - 2,000 2,001 - 4,000 4,001 - 6,000
6,001 - 8,000 8,001 - 10,000 ߦͷ 31
ώετάϥϜΛͬͯɺ price(Ձ֨) ͷΒ͖ͭΛՄࢹԽ͢Δɻ 32
33 νϟʔτɾϏϡʔΛΫϦοΫ͢Δɻ
34 • λΠϓʹώετάϥϜΛબ͢Δɻ • X࣠ʹprice(Ձ֨)Λબ͢Δɻ
35 Ձ֨ΛώετάϥϜͱͯ͠ՄࢹԽ͢Δ͜ͱ͕Ͱ͖ͨɻ price(Ձ֨)ͷ͕ώετάϥϜͰՄࢹԽ͞Εͨɻ
36 ΄ͱΜͲͷσʔλʢ12,780ߦʣ͕0 - 103,390ԁͷؒʹू·͍ͬͯΔɻ
37 Ձ͕֨ҟৗʹߴ͍॓ധࢪઃ͕݅͋ΔΑ͏ͩɻ ͜͏͍ͬͨҟৗͳͷ͜ͱΛ֎Εͱ͍͏ɻ ֎Εʹ͍ͭͯͷৄ͍͠આ໌ɺผͷύʔτ Ͱհ͢Δɻ
38 ώετάϥϜͦͷଞͷνϟʔτͰ֎ΕΛऔΓআ͘ࡍɺޙ΄Ͳհ͢ΔIQR Λ͍ͬͯΔɻ֎ΕΛআ͍ͨঢ়ଶͰώετάϥϜͰΛՄࢹԽͯ͠ΈΔɻ
ʮ֎ΕΛؚΉʯͷνΣοΫΛ֎͢ɻ 39
॓ധࢪઃͷଟ͘Ձ͕֨2,000ԁ͔Β15,000ԁͷؒʹू·͍ͬͯΔΑ͏ͩɻ 15,000ԁҎ߱ʹͳΔͱগͣͭ॓͠ധࢪઃͷ͕গͳ͘ͳ͍ͬͯΔ 40
͜ͷՁ֨ͷΒ͖ͭԿͷҧ͍ʹΑΔͷͳͷ͔ʁ 41
͜͠ͷΒ͖ͭΛઆ໌Ͱ͖Δม͕ݟ͔ͭΕɺՁ֨Λ༧͍ͯ͠ ͘͜ͱ͕Ͱ͖Δɻ 42
43 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
44 ૬ؔ
45 2ͭͷมͷ͏ͪɺ1ͭͷมͷ͕มΘΔͱ͏1ͭͷม ͷҰఆͷنଇΛ͍࣋ͬͯͬ͠ΐʹมΘΔؔ ૬ؔ
46 ڧ͍ਖ਼ͷ ૬ؔؔ ૬ؔؔͳ͠ ڧ͍ෛͷ ૬ؔؔ 0 1 -1 0.5
-0.5 ૬ؔ
47 Ձ֨ͷΒ͖ͭ
Β͖ͭ 35,000 1,000 Ձ֨ 48
Β͖ͭ Airbnbʹ͋Δ॓ധࢪઃͷ Ձ͍֨͘Β͘Β͍ʁ 35,000 1,000 Ձ֨ 49
Β͖ͭ Airbnbʹ͋Δ॓ധࢪઃͷ Ձ͍֨͘Β͘Β͍ʁ 35,000 1,000 Ձ֨ ෆ࣮֬ੑ 50
0 15 10 ͠૬ؔؔΛݟ͚ͭΔ͜ͱ͕Ͱ͖Δͱɻɻɻ 5 35,000 1,000 Ձ֨ ॓ധՄೳਓ 51
0 15 10 5 35,000 1,000 Ձ֨ ॓ധՄೳਓ ॓ധՄೳਓ͕10ਓͩͱ Ձ֨25,000ԁ͘Β͍ɻ
25,000 52
53 ڧ͍૬ؔؔͷ͋ΔͷΛݟ͚ͭΔ͜ͱ͕Ͱ͖Ε Ձ͕֨Ͳ͏มΘΔ͔Λઆ໌͘͢͠ͳΔɻ ·ͨɺՁ֨Λ༧ଌ͘͢͠ͳΔɻ
ෆ࣮֬ੑ͕ݮΔ Ձ֨ Β͖ͭ 35,000 1,000 54 0 15 10 ॓ധՄೳਓ
35,000 1,000 25,000 5 ૬ؔ
ෆ࣮֬ੑ͕ݮΔ தԝ۠ ौ୩۠ ཱ۠ Β͖ͭ Ձ֨ 35,000 1,000 ૬ؔ 55
தԝ۠ ौ୩۠ ཱ۠ ͱΧςΰϦʔͰͷ૬ؔ 56 0 15 10 ॓ധՄೳਓ 35,000
1,000 25,000 5 ͱͰͷ૬ؔ
57 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
ྫ͑ɺ͜ͷՁ֨ͷΒ͖ͭࢢ۠ொଜͷҧ͍ʹΑΔͷͰͳ͍͔ʁ 58
৭(άϧʔϓԽ)ʹcity(ࢢ۠ொଜ)Λબ͢Δɻ 59
όʔ͕ॏͳ͍ͬͯͯഎ໘ʹ͋Δࢢ۠ொଜͷՁ֨ͷ͕ݟΕͳ͍ɻ ͦΜͳ࣌ʹάϧʔϓ͝ͱͷΛՄࢹԽ͢Δͷʹศརͳνϟʔτ͕͋Δɻ 60
61 ώετάϥϜ ີۂઢ ശώήਤ
62 ີۂઢ
63 • ԣ࣠σʔλͷൣғΛද͢ɻ • ॎ࣠ͦͷͷׂ߹Λද͢ɻۂઢͰғ·Εͨ෦ͷ໘ੵ͕1ʹͳΔɻ • ώετάϥϜ͕εϜʔζͳۂઢͰදݱ͞ΕͨΑ͏ͳͷɻ
64 νϟʔτͷλΠϓΛີۂઢʹมߋ͢Δɻ
ີۂઢͰඳ͔Ε͍ͯΔάϧʔϓͷ(ࢢ۠ொଜͷ)͕ଟ͗͢ΔͷͰɺ OtherάϧʔϓΛͬͯසग़͢Δ্Ґ10ͷάϧʔϓʹ͢Δɻ 65
66 සग़άϧʔϓͷʹ10Λࢦఆͯ͠ద༻͢Δɻ
67 େా۠Ձ͕͍֨҆॓ധࢪઃ͕ଟ͍Α͏ͩɻ
68 தԝ۠ͰՁ͕֨ߴ͍॓ധࢪઃ͕͍͔ͭ͋͘Δɻ
ଞʹ͜ͷΒ͖ͭΛઆ໌Ͱ͖Δͷͳ͍͔ʁྫ͑ɺ॓ധՄೳ ਓͷҧ͍͕Ձ֨ͷΒ͖ͭʹӨڹ͍ͯ͠Δ͔͠Εͳ͍ɻ 69
৭Ͱׂʹaccommodates(॓ധՄೳਓ)Λબ͢Δɻ 70
৭ʹͷྻΛׂΓͯͨ߹ɺ෯ʹࣗಈͰΧςΰϦʔԽ͞ΕΔɻ 71
॓ധՄೳਓ͕ଟ͘ͳΔ΄ͲՁ͕֨ߴ͘ͳ͍ͬͯΔɻ॓ധՄೳਓ͕1-4 ͷ߹ͷଟ͘ɺ3,000ԁ͔Β10,000ԁͷؒʹଟ͘ͷ॓ധࢪઃ͕͋Δɻ 72
ଞʹΒ͖ͭΛൺֱ͢Δํ๏͕͋Δ 73
74 ώετάϥϜ ശώήਤ ີۂઢ
75 ശώήਤ
76 • σʔλͷΛɺΧςΰϦʔ͝ͱʹදࣔ͢Δ • ॎ࣠ͷൣғΛද͢ɻ
77 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000
78 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
79 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 ͦΕͧΕͷαΠζʢߦͷʣ͕͘͠ͳΔΑ͏ʹ̐ͭͷάϧʔϓʹ͚Δɻ
80 3Q (ୈ3࢛Ґ/ 75ύʔηϯλΠϧ) 2Q (ୈ2࢛Ґ/ 50ύʔηϯλΠϧ) 1Q (ୈ1࢛Ґ/ 25ύʔηϯλΠϧ)
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
81 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000 3Q தԝ 1Q 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
82 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000 3Q தԝ 1Q 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 ࠷େ ࠷খ
ശώήਤΛͬͯɺ price(Ձ֨ ) ͷΒ͖ͭΛՄࢹԽ͢Δɻ 83
84 • λΠϓʹശώήਤΛબ͢Δɻ • Y࣠ʹprice(Ձ֨)Λબ͢Δɻ
85 ശώήਤΛ͏͜ͱͰɺՁ͕֨6,500͔Β18,000ԁͷؒʹ50%ͷσʔλ͕ू ·͍ͬͯΔ͜ͱ͕Θ͔Δɻ 50%
86 σϑΥϧτͰɺ֎ΕΛؚΉͷνΣοΫ͕֎Ε͍ͯΔɻ
87 ֎ΕΛؚΉʹνΣοΫΛ͢Δͱɺ֎ΕΛؚΜͰശώήਤΛՄࢹԽ͢Δ ͜ͱ͕Ͱ͖Δɻ
νϟʔτͰ༻͞Ε͍ͯΔ֎Εͱʁ 88
89 25ύʔηϯλΠϧ͔Β75ύʔηϯ λΠϧͷൣғΛ࢛Ґൣғ(IQR)ͱ ݺͿɻͪΐ͏Ͳɺശͻ͛ਤͷϘο Ϋεͷ͞ʹ૬͢Δ 1IQR
90 1IQR 1.5IQR 1.5IQR ശͷ্͔Β্ʹ1.5IQRɺ ശͷԼ͔ΒԼʹ1.5IQRͷൣғ ΛٻΊΔɻ
91 1IQR 1.5IQR 1.5IQR ശͷ্͔Β্ʹ1.5IQRɺ ശͷԼ͔ΒԼʹ1.5IQRͷൣғ ΑΓ֎ଆͷ͕֎ΕͱͳΔɻ ֎Ε ֎Ε
92 ֎ΕΛؚΉͷνΣοΫΛ֎͢ɻ
price(Ձ֨) ͷΒ͖ͭΛ city(ࢢ۠ொଜ)͝ͱʹՄࢹԽ͢Δɻ 93
94 X࣠ʹcity(ࢢ۠ொଜ)Λબ͢Δɻ
95 city(ࢢ۠ொଜ)͝ͱʹՁ֨ͷΒ͖ͭΛശώήਤͰද͢͜ͱ͕Ͱ͖ͨɻͷ ൺֱͰ͖Δ͕ɺՌͨͯ͠Ͳͷࢢ۠ொଜ͕Ձ͕֨ߴ͍ͱݴ͑Δͷ͔ʁ
96 ιʔτʹY࣠Λબ͢Δɻ
97 ശώήਤͰιʔτ͢ΔͱσϑΥϧτͰதԝΛͱʹฒͼସ͑ΒΕΔɻ
98 ࢢ۠ொଜͷதʹσʔλͷྔ(ߦ)͕গͳͯ͘ɺശώήਤ͕ඳը͞Ε͍ͯͳ ͍ͷ͕͍͔ͭ͋͘Δɻ ͜ͷ··Ͱԣͷശώήਤͱൺֱ͢Δ͜ͱ ͕༰қͰແ͍ͨΊɺߦ͕Ұఆྔ͋Δࢢ ۠ொଜͷΈʹ͍ͨ͠ɻ
99 X࣠ͷϝχϡʔ͔Βදࣔ͢Δͷ੍ݶΛબ͢Δɻ
100 • λΠϓʹ݅Λબ͢Δɻ • جʹͳΔྻʹ(ߦͷ)Λબ͢Δɻ • ԋࢉࢠʹҎ্Λબ͢Δɻ • ʹ100Λࢦఆ͢Δɻ
101 ॓ധࢪઃ(ߦͷ)͕100݅Ҏ্͋Δࢢ۠ொଜͷΈΛͯ͠ɺശώήਤͰ ΛൺΔ͜ͱ͕Ͱ͖Δɻ
102 தԝ۠ौ୩۠ʹൺͯശͷ෦͕ॎʹ͘ɺՁ͕֨Β͍͍ͭͯΔ͜ͱ͕ Θ͔Δɻ·ͨɺதԝ۠ͷํ͕Ձ֨ͷ࠷େ͕ߴ͍Α͏ͩɻ
103 ཱ۠ശͷ෦͕ଞͷࢢ۠ொଜʹൺ͍ͯҐஔʹ͋ΔͨΊɺՁ͕͍֨ ͱ͜Ζʹଟ͘ͷ॓ധࢪઃ͕͋ΔΑ͏ͩɻ
104 ཱ۠ͱौ୩۠ΛൺͯΈΔͱՁ֨ͷ͕ҟͳ͍ͬͯΔ͜ͱ͕Θ͔Δɻ
price(Ձ֨) ͷΒ͖ͭΛ accomodates(॓ധՄೳਓ)͝ͱʹՄࢹԽ͢Δɻ 105
106 • ৽͘͠νϟʔτΛ࡞͢Δɻ • λΠϓʹശώήਤΛબ͢Δɻ • X࣠ʹaccomodates(॓ധՄೳਓ)Λબ͢Δɻ • Y࣠ʹprice(Ձ֨)Λબ͢Δɻ
107 ॓ധՄೳਓ͕૿͑Δ͜ͱͰՁ͕֨ߴ͘ͳ͍ͬͯ͘Α͏ʹݟ͑Δɻ
108 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
109 ॓ധՄೳਓ Ձ֨ Ռͨͯ͠ɺ॓ധՄೳਓ͕૿͑ΔͱՁ্͕͕֨Δͷ͔ʁ
ࢄਤΛͬͯ॓ധՄೳਓͱՁ֨ ͷؒʹ૬͕ؔؔ͋Δ͔ΛௐΔɻ 110
111 • λΠϓʹࢄਤΛબ͢Δɻ • X࣠ʹaccomodates(॓ധՄೳਓ)Λબ͢Δɻ • Y࣠ʹprice(Ձ֨)Λબ͢Δɻ
112 ͜ͷ··ͰҰധͷՁ͕֨100ສԁۙ͘͢Δ॓ധࢪઃؚ͕·Εͯ͠·͏ɻ ͦͷͨΊɺ֎ΕͱͳΔ͜ΕΒͷΛআ͘ɻ
113 Y࣠ͷ֎ΕΛؚΉͷνΣοΫΛ֎͢ɻ
114 ॓ധՄೳਓ͕૿͑Δ͝ͱʹՁ͕֨গͣͭ͠ߴ͘ͳ͍ͬͯΔΑ͏ʹݟ͑Δ͕ɺ ૬ؔؔ͋ΔͷͩΖ͏͔ʁ
115 Y࣠ͷϝχϡʔ͔ΒτϨϯυϥΠϯΛબ͢Δɻ
116 λΠϓʹઢܗճؼΛબͯ͠ద༻͢Δɻ
117 ઢܗճؼͷઢʹϚεΛϗόʔ͢Δͱ૬ؔؔͳͲͷΛݟΔ͜ͱ͕Ͱ͖Δɻ ૬ؔ0.6ͱ॓ധՄೳਓͱՁ֨ ʹڧ͍ਖ਼ͷ૬͕ؔ͋ΔΑ͏ͩɻ
ϨϏϡʔධՁͱՁ֨ʹ͕ؔ͋Δͷ͔ʁ 118
119 X࣠ʹreview_scores_rating(ϨϏϡʔධՁ)Λબ͢Δɻ
120 ϨϏϡʔධՁ͕͍֎Ε͕͍͔ͭ͋͘ΔΑ͏ͳͷͰऔΓআ͖͍ͨɻ
121 X࣠ͷ֎ΕΛؚΉͷνΣοΫΛ֎͢ɻ
122 ϨϏϡʔධՁͱՁ֨ͷ૬ؔؔ0.08ͱ૬ؔؔͳͦ͞͏Ͱ͋Δɻ
123 ૬͕ؔؔ͋Δ࣌ઢ͕ࣼΊʹҾ͔Εɺ૬͕͍ؔؔ࣌ʹઢ͕ฒ ߦʹҾ͔ΕΔɻ ૬ؔؔ = 0.6 ૬ؔؔ = 0.08
124 ͜Ε·Ͱɺ॓ധՄೳਓ()ͱࢢ۠ொଜ(ΧςΰϦʔ)Λ ͬͯɺՁ֨()ͱ૬͕ؔؔ͋Δ͔ௐ͖ͯͨɻ
தԝ۠ ौ୩۠ ཱ۠ ΧςΰϦʔͱͰͷ૬ؔ 125 0 15 10 ॓ധՄೳਓ 35,000
1,000 25,000 5 ͱͰͷ૬ؔ
தԝ۠ ौ୩۠ ཱ۠ ΧςΰϦʔͱͰͷ૬ؔ ശώήਤ 126
0 15 10 ॓ധՄೳਓ 35,000 1,000 25,000 5 ͱͰͷ૬ؔ ࢄਤ
127
ͱͰͷ૬ؔ ΧςΰϦʔͱͰͷ૬ؔ σʔλλΠϓʹΑΔҧ͍ͰɺҟͳΔνϟʔτΛબΜͰ͖ͨɻ 128
࣮ಉ࢜ͷ૬ؔؔΛݟΔࡍʹɺ ശώήਤΛ͏͜ͱͰ͖Δɻ 129
130 • λΠϓʹശώήਤΛબ͢Δɻ • X࣠ʹaccomodates(॓ധՄೳਓ)Λબ͢Δɻ • Y࣠ʹprice(Ձ֨)Λબ͢Δɻ
131 X࣠ʹׂΓͯΒΕ͍ͯΔ॓ധՄೳਓ͕෯Ͱ5ͭͷάϧʔϓͰ͚ΒΕͨɻ ͷσʔλ͕ͩɺΧςΰϦʔԽ͢Δ͜ͱͰശώήਤΛ͏͜ͱ͕Ͱ͖Δɻ
132 ॓ധՄೳਓ͕૿͑Δ͜ͱͰՁ͕֨ߴ͘ͳ͍ͬͯ͘Α͏ʹݟ͑Δɻ
133 ࢄਤശώήਤಉ͡Α͏ͳใΛද͍ͯ͠ΔɻΑΓײతʹཧղ͢͠ ͍νϟʔτΛબͿͱྑ͍ɻ
࣍ճηϛφʔ
135 EXPLORATORY SaaS ΞφϦςΟΫε ϫʔΫγϣοϓ #6 ίϗʔτੳ Part 1 -
ϨΠϠʔɾέʔΩɾνϟʔτ
136 • ୈ1ճɿ SaaSͷ࠷ॏཁKPI ͱͦͷՄࢹԽ Part 1 • ୈ2ճɿ SaaSͷ࠷ॏཁKPI
ͱͦͷՄࢹԽ Part 2 • ୈ3ճɿ Τϯήʔδϝϯτ Part 1 - DAU/MAU • ୈ4ճɿΤϯήʔδϝϯτ Part 2 - ύϫʔϢʔβʔɾΧʔϒ • ୈ5ճɿ Τϯήʔδϝϯτ Part 3 - RFV • ୈ6ճɿίϗʔτੳ Part 1 - ϨΠϠʔɾέʔΩɾνϟʔτ - 7/9() • ୈ7ճɿ ίϗʔτੳ Part 2 - ੜଘੳ • ୈ8ճɿ NPSͷܭࢉͱࣗ༝هड़ͷςΩετੳ SaaS ΞφϦςΟΫεɾϫʔΫγϣοϓ
None
None
None
EDA Salon ୳ࡧతσʔλੳΛΈΜͳͰֶͿ
141 Kickstarter
ΫϥυɾϑΝϯσΟϯά
143 σʔλͷ֓ཁ
144 σʔλɾσΟΫγϣφϦ
αϯϓϧͷ࣭ • ޭ͍ͯ͠ΔϓϩδΣΫτʹͲΜͳಛ͕͋Δ͔ʁ • ௐୡֹۚΧςΰϦʔࠃ͝ͱʹҧ͍͋Δ͔ʁ • ࣦഊ͢ΔϓϩδΣΫτͷݪҼԿ͔ʁ 145
None
None
Q & A
࿈བྷઌ ϝʔϧ
[email protected]
ΣϒαΠτ https://ja.exploratory.io ϒʔτΩϟϯϓɾτϨʔχϯά https://ja.exploratory.io/training-jp Twitter @ShirotoTakato
EXPLORATORY