Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データの可視化ワークショップ #3 - ばらつきと相関の可視化
Search
Takato Shiroto
July 02, 2020
Technology
0
1k
データの可視化ワークショップ #3 - ばらつきと相関の可視化
データの可視化ワークショップの第3弾のばらつきと相関の可視化で使用したスライドです。
Takato Shiroto
July 02, 2020
Tweet
Share
More Decks by Takato Shiroto
See All by Takato Shiroto
Exploratory v6.7の紹介
takatoshiroto
0
900
Exploratory v6.6の紹介
takatoshiroto
0
1.6k
Exploratory v6.5の紹介
takatoshiroto
0
5.1k
コンバージョン率と信頼区間の推移を可視化する方法
takatoshiroto
1
320
Exploratory Hour #104 - 別の列の値をもとに、カテゴリー列の値の順序を指定したい
takatoshiroto
0
200
Exploratory Hour #105 - 元のデータ順をもとに、カテゴリー列の値の順序を指定したい
takatoshiroto
1
270
Exploratory Hour #102 - complete関数を使って2つの時間の間の値を生成したい
takatoshiroto
0
120
Exploratory Hour #103 - 仕事の開始・終了時間データから、どの時間に何人働いているか知りたい
takatoshiroto
0
110
Exploratory v6.4の紹介
takatoshiroto
0
5.8k
Other Decks in Technology
See All in Technology
AI関数が早くなったので試してみよう
kumakura
0
290
生成AIによるデータサイエンスの変革
taka_aki
0
3k
2時間で300+テーブルをデータ基盤に連携するためのAI活用 / FukuokaDataEngineer
sansan_randd
0
150
大規模イベントに向けた ABEMA アーキテクチャの遍歴 ~ Platform Strategy 詳細解説 ~
nagapad
0
230
AIに目を奪われすぎて、周りの困っている人間が見えなくなっていませんか?
cap120
1
640
Segment Anything Modelの最新動向:SAM2とその発展系
tenten0727
0
770
Google Agentspaceを実際に導入した効果と今後の展望
mixi_engineers
PRO
3
700
AI時代の経営、Bet AI Vision #BetAIDay
layerx
PRO
1
2k
【CEDEC2025】『Shadowverse: Worlds Beyond』二度目のDCG開発でゲームをリデザインする~遊びやすさと競技性の両立~
cygames
PRO
1
370
「AIと一緒にやる」が当たり前になるまでの奮闘記
kakehashi
PRO
3
150
夏休みWebアプリパフォーマンス相談室/web-app-performance-on-radio
hachi_eiji
0
160
20250807_Kiroと私の反省会
riz3f7
0
230
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Thoughts on Productivity
jonyablonski
69
4.8k
Making Projects Easy
brettharned
117
6.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Speed Design
sergeychernyshev
32
1.1k
KATA
mclloyd
32
14k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
450
Typedesign – Prime Four
hannesfritz
42
2.7k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
Transcript
EXPLORATORY σʔλͷՄࢹԽϫʔΫγϣοϓ #3 Β͖ͭͱ૬ؔͷՄࢹԽ
σʔλͷՄࢹԽϫʔΫγϣοϓ • ୈ1ճɿσʔλͷՄࢹԽ - جૅ • ୈ2ճɿ࣌ܥྻσʔλͷՄࢹԽ • ୈ3ճɿΒ͖ͭͱ૬ؔͷՄࢹԽ •
ୈ4ճɿෆ࣮֬ੑͷՄࢹԽ • ୈ5ճɿՄࢹԽͷͨΊͷσʔλϥϯάϦϯά
3 εϐʔΧʔ നށ ܟొ Customer Succes EXPLORATORY ུྺ େֶࡏֶதʹϑʔυϩεΛݮΒͨ͢ΊʹɺֶੜஂମΛ্ཱͪ͛දΛ ΊΔɻͦͷޙɺϏδωεΛΔͨΊʹԽֶϝʔΧʔͷσϡϙϯͱ
ϑʔυςοΫܥελʔτΞοϓͰӦۀͱϚʔέςΟϯάΛܦݧɻ ΞϓϦͷͷͨΊʹσʔλαΠΤϯε͕ඞཁͩͱײ͡ɺΞϓϦʹ ಛԽͨ͠ϢʔβʔͷߦಈੳπʔϧΛ։ൃ͢ΔاۀʹͯɺΞϓϦۀք ͷKPIੳͳͲΛ୲͢Δɻ ݱࡏExploratory, Inc. ͰΧελϚʔαΫηεΛ୲͢ΔΒɺσʔ λͷՄࢹԽͱ୳ࡧతσʔλੳΛઐͱͯ͠σʔλαΠΤϯεͷීٴ ʹऔΓΉɻ @ShirotoTakato
4 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
ࣄલ४උ 5
σʔλͷΠϯϙʔτ 6
7 αϯϓϧσʔλ ͜ͷΨΠυͰʮAirbnbͷ౦ژͷ॓ധࢪઃσʔλʯΛ͏ɻ
σʔλϑϨʔϜͷϓϥεϘλϯ( + )͔ΒσʔλɾΧλϩάΛબͿ 8
αʔνϘοΫεʹAirbnbͱೖྗͯ͠ݕࡧ͢Δ 9
σʔλͷใΛݟ͍ͨ߹։͘ϘλϯΛΫϦοΫ͢Δ 10
Metadataλϒ͔Βσʔλͷઆ໌Λ֬ೝͰ͖Δ 11
ΠϯϙʔτϘλϯΛΫϦοΫͯ͠σʔλΛΠϯϙʔτ͢Δ 12
อଘΛΫϦοΫ͢Δ 13
σʔλΛΠϯϙʔτ͢Δ͜ͱ͕Ͱ͖ͨ 14
༻͢Δओͳσʔλ 15
16 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
σʔλΒͭ͘ 17
18 12,000ԁ ฏۉ Ձ֨
19 σʔλΒ͍͍ͭͯΔɻ
ฏۉͷมԽʹහײͰ͋Δɻ ΄ΜͷҰѲΓͷۃʹߴ͍ɺ͍͘͠ʹΑͬ ͯฏۉେ͖͘ӨڹΛड͚Δɻ
21 ྫ͑ɺۃʹՁ͕֨ߴ͍॓ധࢪઃ͕͋ΔͱɺՁ֨ͷฏۉҾͬுΒΕͯ ͠·͏͜ͱ͕͋Δɻ
ूܭͷݶք • ͲΜͳ౷ܭɺͬͱෳࡶͳਅཧͷཁͰ͋Δ͜ͱΛܾͯ͠Εͯ ͍͚·ͤΜɻ • ฏۉͯ͢ΛޠΒͳ͍ɻͦΕ·ΔͰɺͷ͖͔ͧ݀Β෦ͷத Λݟ͍ͯΔΑ͏ͳͷͰ͋Δɻ (Sir Andrew Dilnot,
former chair of the UK Statistics Authority) 22
23 ฏۉ͚ͩΛΈ͍ͯΔͱཪʹ͋ΔΒ͖ͭΛݟಀͯ͠͠·͏ɻ
24 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
25 Β͖ͭͷՄࢹԽ
26 ώετάϥϜ ີۂઢ ശώήਤ
27 ώετάϥϜ ີۂઢ ശώήਤ
ώετάϥϜ Λ͍͔ͭ͘ͷ۠ըʹ͚ɺ ͦΕͧΕͷ۠ըʹ͋Δσʔλͷྔ(ߦͷ)Λ όʔͷߴ͞ͱͯ͠ද͢ɻ 28
1,000 1,500 2,200 2,500 3,000 6,500 7,100 2,200 3,800 4,500
2,200 5,300 3,400 4,200 5,200 5,800 8,100 9,000 7,800 29
1,000 1,500 3,000 6,500 7,100 2,200 3,800 4,500 5,300 3,400
4,200 5,200 5,800 8,100 7,800 30
price(Ձ֨) 0 - 2,000 2,001 - 4,000 4,001 - 6,000
6,001 - 8,000 8,001 - 10,000 ߦͷ 31
ώετάϥϜΛͬͯɺ price(Ձ֨) ͷΒ͖ͭΛՄࢹԽ͢Δɻ 32
33 νϟʔτɾϏϡʔΛΫϦοΫ͢Δɻ
34 • λΠϓʹώετάϥϜΛબ͢Δɻ • X࣠ʹprice(Ձ֨)Λબ͢Δɻ
35 Ձ֨ΛώετάϥϜͱͯ͠ՄࢹԽ͢Δ͜ͱ͕Ͱ͖ͨɻ price(Ձ֨)ͷ͕ώετάϥϜͰՄࢹԽ͞Εͨɻ
36 ΄ͱΜͲͷσʔλʢ12,780ߦʣ͕0 - 103,390ԁͷؒʹू·͍ͬͯΔɻ
37 Ձ͕֨ҟৗʹߴ͍॓ധࢪઃ͕݅͋ΔΑ͏ͩɻ ͜͏͍ͬͨҟৗͳͷ͜ͱΛ֎Εͱ͍͏ɻ ֎Εʹ͍ͭͯͷৄ͍͠આ໌ɺผͷύʔτ Ͱհ͢Δɻ
38 ώετάϥϜͦͷଞͷνϟʔτͰ֎ΕΛऔΓআ͘ࡍɺޙ΄Ͳհ͢ΔIQR Λ͍ͬͯΔɻ֎ΕΛআ͍ͨঢ়ଶͰώετάϥϜͰΛՄࢹԽͯ͠ΈΔɻ
ʮ֎ΕΛؚΉʯͷνΣοΫΛ֎͢ɻ 39
॓ധࢪઃͷଟ͘Ձ͕֨2,000ԁ͔Β15,000ԁͷؒʹू·͍ͬͯΔΑ͏ͩɻ 15,000ԁҎ߱ʹͳΔͱগͣͭ॓͠ധࢪઃͷ͕গͳ͘ͳ͍ͬͯΔ 40
͜ͷՁ֨ͷΒ͖ͭԿͷҧ͍ʹΑΔͷͳͷ͔ʁ 41
͜͠ͷΒ͖ͭΛઆ໌Ͱ͖Δม͕ݟ͔ͭΕɺՁ֨Λ༧͍ͯ͠ ͘͜ͱ͕Ͱ͖Δɻ 42
43 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
44 ૬ؔ
45 2ͭͷมͷ͏ͪɺ1ͭͷมͷ͕มΘΔͱ͏1ͭͷม ͷҰఆͷنଇΛ͍࣋ͬͯͬ͠ΐʹมΘΔؔ ૬ؔ
46 ڧ͍ਖ਼ͷ ૬ؔؔ ૬ؔؔͳ͠ ڧ͍ෛͷ ૬ؔؔ 0 1 -1 0.5
-0.5 ૬ؔ
47 Ձ֨ͷΒ͖ͭ
Β͖ͭ 35,000 1,000 Ձ֨ 48
Β͖ͭ Airbnbʹ͋Δ॓ധࢪઃͷ Ձ͍֨͘Β͘Β͍ʁ 35,000 1,000 Ձ֨ 49
Β͖ͭ Airbnbʹ͋Δ॓ധࢪઃͷ Ձ͍֨͘Β͘Β͍ʁ 35,000 1,000 Ձ֨ ෆ࣮֬ੑ 50
0 15 10 ͠૬ؔؔΛݟ͚ͭΔ͜ͱ͕Ͱ͖Δͱɻɻɻ 5 35,000 1,000 Ձ֨ ॓ധՄೳਓ 51
0 15 10 5 35,000 1,000 Ձ֨ ॓ധՄೳਓ ॓ധՄೳਓ͕10ਓͩͱ Ձ֨25,000ԁ͘Β͍ɻ
25,000 52
53 ڧ͍૬ؔؔͷ͋ΔͷΛݟ͚ͭΔ͜ͱ͕Ͱ͖Ε Ձ͕֨Ͳ͏มΘΔ͔Λઆ໌͘͢͠ͳΔɻ ·ͨɺՁ֨Λ༧ଌ͘͢͠ͳΔɻ
ෆ࣮֬ੑ͕ݮΔ Ձ֨ Β͖ͭ 35,000 1,000 54 0 15 10 ॓ധՄೳਓ
35,000 1,000 25,000 5 ૬ؔ
ෆ࣮֬ੑ͕ݮΔ தԝ۠ ौ୩۠ ཱ۠ Β͖ͭ Ձ֨ 35,000 1,000 ૬ؔ 55
தԝ۠ ौ୩۠ ཱ۠ ͱΧςΰϦʔͰͷ૬ؔ 56 0 15 10 ॓ധՄೳਓ 35,000
1,000 25,000 5 ͱͰͷ૬ؔ
57 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
ྫ͑ɺ͜ͷՁ֨ͷΒ͖ͭࢢ۠ொଜͷҧ͍ʹΑΔͷͰͳ͍͔ʁ 58
৭(άϧʔϓԽ)ʹcity(ࢢ۠ொଜ)Λબ͢Δɻ 59
όʔ͕ॏͳ͍ͬͯͯഎ໘ʹ͋Δࢢ۠ொଜͷՁ֨ͷ͕ݟΕͳ͍ɻ ͦΜͳ࣌ʹάϧʔϓ͝ͱͷΛՄࢹԽ͢Δͷʹศརͳνϟʔτ͕͋Δɻ 60
61 ώετάϥϜ ີۂઢ ശώήਤ
62 ີۂઢ
63 • ԣ࣠σʔλͷൣғΛද͢ɻ • ॎ࣠ͦͷͷׂ߹Λද͢ɻۂઢͰғ·Εͨ෦ͷ໘ੵ͕1ʹͳΔɻ • ώετάϥϜ͕εϜʔζͳۂઢͰදݱ͞ΕͨΑ͏ͳͷɻ
64 νϟʔτͷλΠϓΛີۂઢʹมߋ͢Δɻ
ີۂઢͰඳ͔Ε͍ͯΔάϧʔϓͷ(ࢢ۠ொଜͷ)͕ଟ͗͢ΔͷͰɺ OtherάϧʔϓΛͬͯසग़͢Δ্Ґ10ͷάϧʔϓʹ͢Δɻ 65
66 සग़άϧʔϓͷʹ10Λࢦఆͯ͠ద༻͢Δɻ
67 େా۠Ձ͕͍֨҆॓ധࢪઃ͕ଟ͍Α͏ͩɻ
68 தԝ۠ͰՁ͕֨ߴ͍॓ധࢪઃ͕͍͔ͭ͋͘Δɻ
ଞʹ͜ͷΒ͖ͭΛઆ໌Ͱ͖Δͷͳ͍͔ʁྫ͑ɺ॓ധՄೳ ਓͷҧ͍͕Ձ֨ͷΒ͖ͭʹӨڹ͍ͯ͠Δ͔͠Εͳ͍ɻ 69
৭Ͱׂʹaccommodates(॓ധՄೳਓ)Λબ͢Δɻ 70
৭ʹͷྻΛׂΓͯͨ߹ɺ෯ʹࣗಈͰΧςΰϦʔԽ͞ΕΔɻ 71
॓ധՄೳਓ͕ଟ͘ͳΔ΄ͲՁ͕֨ߴ͘ͳ͍ͬͯΔɻ॓ധՄೳਓ͕1-4 ͷ߹ͷଟ͘ɺ3,000ԁ͔Β10,000ԁͷؒʹଟ͘ͷ॓ധࢪઃ͕͋Δɻ 72
ଞʹΒ͖ͭΛൺֱ͢Δํ๏͕͋Δ 73
74 ώετάϥϜ ശώήਤ ີۂઢ
75 ശώήਤ
76 • σʔλͷΛɺΧςΰϦʔ͝ͱʹදࣔ͢Δ • ॎ࣠ͷൣғΛද͢ɻ
77 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000
78 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
79 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 ͦΕͧΕͷαΠζʢߦͷʣ͕͘͠ͳΔΑ͏ʹ̐ͭͷάϧʔϓʹ͚Δɻ
80 3Q (ୈ3࢛Ґ/ 75ύʔηϯλΠϧ) 2Q (ୈ2࢛Ґ/ 50ύʔηϯλΠϧ) 1Q (ୈ1࢛Ґ/ 25ύʔηϯλΠϧ)
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
81 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000 3Q தԝ 1Q 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
82 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
10,000 3Q தԝ 1Q 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 ࠷େ ࠷খ
ശώήਤΛͬͯɺ price(Ձ֨ ) ͷΒ͖ͭΛՄࢹԽ͢Δɻ 83
84 • λΠϓʹശώήਤΛબ͢Δɻ • Y࣠ʹprice(Ձ֨)Λબ͢Δɻ
85 ശώήਤΛ͏͜ͱͰɺՁ͕֨6,500͔Β18,000ԁͷؒʹ50%ͷσʔλ͕ू ·͍ͬͯΔ͜ͱ͕Θ͔Δɻ 50%
86 σϑΥϧτͰɺ֎ΕΛؚΉͷνΣοΫ͕֎Ε͍ͯΔɻ
87 ֎ΕΛؚΉʹνΣοΫΛ͢Δͱɺ֎ΕΛؚΜͰശώήਤΛՄࢹԽ͢Δ ͜ͱ͕Ͱ͖Δɻ
νϟʔτͰ༻͞Ε͍ͯΔ֎Εͱʁ 88
89 25ύʔηϯλΠϧ͔Β75ύʔηϯ λΠϧͷൣғΛ࢛Ґൣғ(IQR)ͱ ݺͿɻͪΐ͏Ͳɺശͻ͛ਤͷϘο Ϋεͷ͞ʹ૬͢Δ 1IQR
90 1IQR 1.5IQR 1.5IQR ശͷ্͔Β্ʹ1.5IQRɺ ശͷԼ͔ΒԼʹ1.5IQRͷൣғ ΛٻΊΔɻ
91 1IQR 1.5IQR 1.5IQR ശͷ্͔Β্ʹ1.5IQRɺ ശͷԼ͔ΒԼʹ1.5IQRͷൣғ ΑΓ֎ଆͷ͕֎ΕͱͳΔɻ ֎Ε ֎Ε
92 ֎ΕΛؚΉͷνΣοΫΛ֎͢ɻ
price(Ձ֨) ͷΒ͖ͭΛ city(ࢢ۠ொଜ)͝ͱʹՄࢹԽ͢Δɻ 93
94 X࣠ʹcity(ࢢ۠ொଜ)Λબ͢Δɻ
95 city(ࢢ۠ொଜ)͝ͱʹՁ֨ͷΒ͖ͭΛശώήਤͰද͢͜ͱ͕Ͱ͖ͨɻͷ ൺֱͰ͖Δ͕ɺՌͨͯ͠Ͳͷࢢ۠ொଜ͕Ձ͕֨ߴ͍ͱݴ͑Δͷ͔ʁ
96 ιʔτʹY࣠Λબ͢Δɻ
97 ശώήਤͰιʔτ͢ΔͱσϑΥϧτͰதԝΛͱʹฒͼସ͑ΒΕΔɻ
98 ࢢ۠ொଜͷதʹσʔλͷྔ(ߦ)͕গͳͯ͘ɺശώήਤ͕ඳը͞Ε͍ͯͳ ͍ͷ͕͍͔ͭ͋͘Δɻ ͜ͷ··Ͱԣͷശώήਤͱൺֱ͢Δ͜ͱ ͕༰қͰແ͍ͨΊɺߦ͕Ұఆྔ͋Δࢢ ۠ொଜͷΈʹ͍ͨ͠ɻ
99 X࣠ͷϝχϡʔ͔Βදࣔ͢Δͷ੍ݶΛબ͢Δɻ
100 • λΠϓʹ݅Λબ͢Δɻ • جʹͳΔྻʹ(ߦͷ)Λબ͢Δɻ • ԋࢉࢠʹҎ্Λબ͢Δɻ • ʹ100Λࢦఆ͢Δɻ
101 ॓ധࢪઃ(ߦͷ)͕100݅Ҏ্͋Δࢢ۠ொଜͷΈΛͯ͠ɺശώήਤͰ ΛൺΔ͜ͱ͕Ͱ͖Δɻ
102 தԝ۠ौ୩۠ʹൺͯശͷ෦͕ॎʹ͘ɺՁ͕֨Β͍͍ͭͯΔ͜ͱ͕ Θ͔Δɻ·ͨɺதԝ۠ͷํ͕Ձ֨ͷ࠷େ͕ߴ͍Α͏ͩɻ
103 ཱ۠ശͷ෦͕ଞͷࢢ۠ொଜʹൺ͍ͯҐஔʹ͋ΔͨΊɺՁ͕͍֨ ͱ͜Ζʹଟ͘ͷ॓ധࢪઃ͕͋ΔΑ͏ͩɻ
104 ཱ۠ͱौ୩۠ΛൺͯΈΔͱՁ֨ͷ͕ҟͳ͍ͬͯΔ͜ͱ͕Θ͔Δɻ
price(Ձ֨) ͷΒ͖ͭΛ accomodates(॓ധՄೳਓ)͝ͱʹՄࢹԽ͢Δɻ 105
106 • ৽͘͠νϟʔτΛ࡞͢Δɻ • λΠϓʹശώήਤΛબ͢Δɻ • X࣠ʹaccomodates(॓ധՄೳਓ)Λબ͢Δɻ • Y࣠ʹprice(Ձ֨)Λબ͢Δɻ
107 ॓ധՄೳਓ͕૿͑Δ͜ͱͰՁ͕֨ߴ͘ͳ͍ͬͯ͘Α͏ʹݟ͑Δɻ
108 ΞδΣϯμ • σʔλͷΒ͖ͭ • Β͖ͭͷՄࢹԽ • ૬ؔؔ • ͱΧςΰϦʔͷ૬ؔؔͷՄࢹԽ
• Ͳ͏͠ͷ૬ؔؔͷՄࢹԽ
109 ॓ധՄೳਓ Ձ֨ Ռͨͯ͠ɺ॓ധՄೳਓ͕૿͑ΔͱՁ্͕͕֨Δͷ͔ʁ
ࢄਤΛͬͯ॓ധՄೳਓͱՁ֨ ͷؒʹ૬͕ؔؔ͋Δ͔ΛௐΔɻ 110
111 • λΠϓʹࢄਤΛબ͢Δɻ • X࣠ʹaccomodates(॓ധՄೳਓ)Λબ͢Δɻ • Y࣠ʹprice(Ձ֨)Λબ͢Δɻ
112 ͜ͷ··ͰҰധͷՁ͕֨100ສԁۙ͘͢Δ॓ധࢪઃؚ͕·Εͯ͠·͏ɻ ͦͷͨΊɺ֎ΕͱͳΔ͜ΕΒͷΛআ͘ɻ
113 Y࣠ͷ֎ΕΛؚΉͷνΣοΫΛ֎͢ɻ
114 ॓ധՄೳਓ͕૿͑Δ͝ͱʹՁ͕֨গͣͭ͠ߴ͘ͳ͍ͬͯΔΑ͏ʹݟ͑Δ͕ɺ ૬ؔؔ͋ΔͷͩΖ͏͔ʁ
115 Y࣠ͷϝχϡʔ͔ΒτϨϯυϥΠϯΛબ͢Δɻ
116 λΠϓʹઢܗճؼΛબͯ͠ద༻͢Δɻ
117 ઢܗճؼͷઢʹϚεΛϗόʔ͢Δͱ૬ؔؔͳͲͷΛݟΔ͜ͱ͕Ͱ͖Δɻ ૬ؔ0.6ͱ॓ധՄೳਓͱՁ֨ ʹڧ͍ਖ਼ͷ૬͕ؔ͋ΔΑ͏ͩɻ
ϨϏϡʔධՁͱՁ֨ʹ͕ؔ͋Δͷ͔ʁ 118
119 X࣠ʹreview_scores_rating(ϨϏϡʔධՁ)Λબ͢Δɻ
120 ϨϏϡʔධՁ͕͍֎Ε͕͍͔ͭ͋͘ΔΑ͏ͳͷͰऔΓআ͖͍ͨɻ
121 X࣠ͷ֎ΕΛؚΉͷνΣοΫΛ֎͢ɻ
122 ϨϏϡʔධՁͱՁ֨ͷ૬ؔؔ0.08ͱ૬ؔؔͳͦ͞͏Ͱ͋Δɻ
123 ૬͕ؔؔ͋Δ࣌ઢ͕ࣼΊʹҾ͔Εɺ૬͕͍ؔؔ࣌ʹઢ͕ฒ ߦʹҾ͔ΕΔɻ ૬ؔؔ = 0.6 ૬ؔؔ = 0.08
124 ͜Ε·Ͱɺ॓ധՄೳਓ()ͱࢢ۠ொଜ(ΧςΰϦʔ)Λ ͬͯɺՁ֨()ͱ૬͕ؔؔ͋Δ͔ௐ͖ͯͨɻ
தԝ۠ ौ୩۠ ཱ۠ ΧςΰϦʔͱͰͷ૬ؔ 125 0 15 10 ॓ധՄೳਓ 35,000
1,000 25,000 5 ͱͰͷ૬ؔ
தԝ۠ ौ୩۠ ཱ۠ ΧςΰϦʔͱͰͷ૬ؔ ശώήਤ 126
0 15 10 ॓ധՄೳਓ 35,000 1,000 25,000 5 ͱͰͷ૬ؔ ࢄਤ
127
ͱͰͷ૬ؔ ΧςΰϦʔͱͰͷ૬ؔ σʔλλΠϓʹΑΔҧ͍ͰɺҟͳΔνϟʔτΛબΜͰ͖ͨɻ 128
࣮ಉ࢜ͷ૬ؔؔΛݟΔࡍʹɺ ശώήਤΛ͏͜ͱͰ͖Δɻ 129
130 • λΠϓʹശώήਤΛબ͢Δɻ • X࣠ʹaccomodates(॓ധՄೳਓ)Λબ͢Δɻ • Y࣠ʹprice(Ձ֨)Λબ͢Δɻ
131 X࣠ʹׂΓͯΒΕ͍ͯΔ॓ധՄೳਓ͕෯Ͱ5ͭͷάϧʔϓͰ͚ΒΕͨɻ ͷσʔλ͕ͩɺΧςΰϦʔԽ͢Δ͜ͱͰശώήਤΛ͏͜ͱ͕Ͱ͖Δɻ
132 ॓ധՄೳਓ͕૿͑Δ͜ͱͰՁ͕֨ߴ͘ͳ͍ͬͯ͘Α͏ʹݟ͑Δɻ
133 ࢄਤശώήਤಉ͡Α͏ͳใΛද͍ͯ͠ΔɻΑΓײతʹཧղ͢͠ ͍νϟʔτΛબͿͱྑ͍ɻ
࣍ճηϛφʔ
135 EXPLORATORY SaaS ΞφϦςΟΫε ϫʔΫγϣοϓ #6 ίϗʔτੳ Part 1 -
ϨΠϠʔɾέʔΩɾνϟʔτ
136 • ୈ1ճɿ SaaSͷ࠷ॏཁKPI ͱͦͷՄࢹԽ Part 1 • ୈ2ճɿ SaaSͷ࠷ॏཁKPI
ͱͦͷՄࢹԽ Part 2 • ୈ3ճɿ Τϯήʔδϝϯτ Part 1 - DAU/MAU • ୈ4ճɿΤϯήʔδϝϯτ Part 2 - ύϫʔϢʔβʔɾΧʔϒ • ୈ5ճɿ Τϯήʔδϝϯτ Part 3 - RFV • ୈ6ճɿίϗʔτੳ Part 1 - ϨΠϠʔɾέʔΩɾνϟʔτ - 7/9() • ୈ7ճɿ ίϗʔτੳ Part 2 - ੜଘੳ • ୈ8ճɿ NPSͷܭࢉͱࣗ༝هड़ͷςΩετੳ SaaS ΞφϦςΟΫεɾϫʔΫγϣοϓ
None
None
None
EDA Salon ୳ࡧతσʔλੳΛΈΜͳͰֶͿ
141 Kickstarter
ΫϥυɾϑΝϯσΟϯά
143 σʔλͷ֓ཁ
144 σʔλɾσΟΫγϣφϦ
αϯϓϧͷ࣭ • ޭ͍ͯ͠ΔϓϩδΣΫτʹͲΜͳಛ͕͋Δ͔ʁ • ௐୡֹۚΧςΰϦʔࠃ͝ͱʹҧ͍͋Δ͔ʁ • ࣦഊ͢ΔϓϩδΣΫτͷݪҼԿ͔ʁ 145
None
None
Q & A
࿈བྷઌ ϝʔϧ
[email protected]
ΣϒαΠτ https://ja.exploratory.io ϒʔτΩϟϯϓɾτϨʔχϯά https://ja.exploratory.io/training-jp Twitter @ShirotoTakato
EXPLORATORY