• Barr, D. J., Levy, R., Scheepers, C., and Tily, H. J. (2013). Random effects structure for con
f
irmatory hypothesis testing: Keep it maximal.
Journal of memory and language, 68(3), 255
–
278.
• Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious Mixed Models. https://arxiv.org/abs/1506.04967v2
• Brauer, M., & Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A uni
f
ied framework to analyze
categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389
–
411.
https://doi.org/10.1037/met0000159
• Brysbaert, M., & Stevens, M. (2018). Power Analysis and Effect Size in Mixed Effects Models: A Tutorial. Journal of Cognition, 1(1), 9. https://
doi.org/10.5334/joc.10
• Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods &
Research, 33(2), 261
–
304. https://doi.org/10.1177/0049124104268644
• Frossard, J., & Renaud, O. (2019). Choosing the correlation structure of mixed effect models for experiments with stimuli. https://arxiv.org/
abs/1903.10766v3
• Gries, S. T. (2021). (Generalized Linear) Mixed-Effects Modeling: A Learner Corpus Example. Language Learning, 71(3), 757
–
798. https://
doi.org/10.1111/lang.12448
• Hou, X. (2021). Learning two syntactic constructions simultaneously: A case of overshadowing. Language and Cognition, 13(3), 467
–
493.
https://doi.org/10.1017/langcog.2021.10
• Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and power in linear mixed models. Journal of
Memory and Language, 94, 305
–
315. https://doi.org/10.1016/j.jml.2017.01.001
• Meteyard, L., & Davies, R. A. I. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory
and Language, 112, 104092. https://doi.org/10.1016/j.jml.2020.104092
• Murakami, A. (2016). Modeling Systematicity and Individuality in Nonlinear Second Language Development: The Case of English
Grammatical Morphemes: Modeling Individual Nonlinear Development. Language Learning, 66(4), 834
–
871. https://doi.org/10.1111/lang.12166
• RPubs—Reduction of Complexity of Linear Mixed Models with Double-Bar Syntax. (n.d.). Retrieved November 3, 2021, from https://
rpubs.com/Reinhold/22193
• RPubs—The Correlation Parameter in the Random Effects of Mixed Effects Models. (n.d.). Retrieved November 3, 2021, from https://
rpubs.com/yjunechoe/correlationsLMEM
• Schad, D. J., Vasishth, S., Hohenstein, S., & Kliegl, R. (2020). How to capitalize on a priori contrasts in linear (mixed) models: A tutorial.
Journal of Memory and Language, 110, 104038. https://doi.org/10.1016/j.jml.2019.104038
• Scherbaum, C. A., & Ferreter, J. M. (2009). Estimating Statistical Power and Required Sample Sizes for Organizational Research Using
Multilevel Modeling. Organizational Research Methods, 12(2), 347
–
367. https://doi.org/10.1177/1094428107308906
• Should we
f
it maximal linear mixed models? | R-bloggers. (2014, November 25). https://www.r-bloggers.com/2014/11/should-we-
f
it-maximal-
linear-mixed-models/
• ৽Ҫֶ, & Roland D. (2016). ݴޠཧղݚڀʹ͓͚Δ؟ٿӡಈσʔλٴͼಡΈ࣌ؒσʔλͷ౷ܭੳ. ౷ܭཧ, 64(2), 201
–
231.
ࢀߟจݙ
77