Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R入門の入門 / 2018methoken-R-workshop
Search
Yu Tamura
June 02, 2018
Programming
0
240
R入門の入門 / 2018methoken-R-workshop
LET関西支部メソドロジー研究部会2018年度第1回研究会にて行ったR入門者講習のスライドです。
Yu Tamura
June 02, 2018
Tweet
Share
More Decks by Yu Tamura
See All by Yu Tamura
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
400
Distributive Reading and Conceptual Plurality in Second Language Acquisition / J-SLA2024
tam07pb915
0
150
英語教育とSLA研究の距離感: 理論と実践は往復するべきか / 2023-11-04_LET-Kansai-Symposium_Tamura
tam07pb915
0
3.2k
豊富な産学連携・地域連携と連動させた「考動力」人材育成プロジェクト主催・関西大学キャリアセンター共催 「第2弾 社会人に聞く! 多様な博士のキャリア」/ 2023-10-28_my-advice-to-phd-students
tam07pb915
0
1.9k
生成系AIが(英語)教師の代わりにやってくれること / 2023-06-24_what-generative-AI-can-do-for-us_censored
tam07pb915
3
3.4k
ChatGPTの英語教材への活用 / 2023-02-25_chat-gpt_teaching-materials
tam07pb915
1
5.1k
一般化線形混合モデルの実践:気をつけたい3つのポイント / 2021-11-06 LMM and GLMM
tam07pb915
2
7.9k
タスク・ベースの言語指導とはなにか,どうやって実践するか / 2021-10-30-TBLT
tam07pb915
0
2.8k
TBLTの課題・展望・指導の工夫/keles-seminar43
tam07pb915
0
2.1k
Other Decks in Programming
See All in Programming
AIコーディングエージェント(NotebookLM)
kondai24
0
170
CSC509 Lecture 14
javiergs
PRO
0
220
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
3k
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
6
2.1k
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
260
AWS CDKの推しポイントN選
akihisaikeda
1
240
Why Kotlin? 電子カルテを Kotlin で開発する理由 / Why Kotlin? at Henry
agatan
2
7k
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
2
660
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
120
TUIライブラリつくってみた / i-just-make-TUI-library
kazto
1
370
JETLS.jl ─ A New Language Server for Julia
abap34
1
340
Developing static sites with Ruby
okuramasafumi
0
260
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1371
200k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
We Have a Design System, Now What?
morganepeng
54
7.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.8k
GitHub's CSS Performance
jonrohan
1032
470k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Designing for humans not robots
tammielis
254
26k
Six Lessons from altMBA
skipperchong
29
4.1k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
It's Worth the Effort
3n
187
29k
Transcript
Rೖͷೖ 20186݄2 LETؔࢧ෦ϝιυϩδʔݚڀ෦ձ 2018ୈ1ճݚڀձ ԙɹؔେֶઍཬࢁΩϟϯύε
͡Ίʹ • ຊτϥϒϧଟൃଳͱࢥΘΕΔͱ͜ΖʹՌ ʹΉαϑΝϦπΞʔͱͳ͍ͬͯ·͢ • ͨͩ͠ਅͷRॳ৺ऀͷํͰ৺ͳ͞Βͣʹ • ͜ͷڭࣨͷҎ্RͰ͖ΔਓͰ͢ • पΓʹ͍Δ༏͍͠Φτφͷํ͕ͨͪࠔͬͨΒॿ͚ͯ͘
Ε·͢ • Λ߹ΘͤΑ͏ͱ͠ͳ͍ਓ΄Ͳॿ͚͕ͨΓͰ͢ • ࣸਅࡱӨ͝ԕྀͳ͞Βͳ͍Ͱ͍ͩ͘͞
͡Ίʹʢ͖ͭͮʣ • ຊͷWSͷఆडߨऀ • Rʹ·ͬͨ͘৮ͬͨ͜ͱ͕ͳ͍ਓ • RΛ৮ͬͨ͜ͱ͋Δ͚ͲɼΕͨਓ • ຊͷWSͷΰʔϧ •
Rʹ͍ͭͯͷجຊతͳࣝΛಘΔʢࣝʣ • RͰؔͳͲ͍ͭͭجຊతͳܭࢉ͕Ͱ͖Δʢٕೳʣ • RͰ؆୯ͳ࡞ਤ͕Ͱ͖Δʢٕೳʣ • ࢥߟɾஅɾදݱͷ؍ʹ͍ͭͯsomeday in the future
Today’s Menu • RͬͯͳΜͶΜ • RStudioͬͯͷ͕͋ΜͶΜ • ·ͣΠϯετʔϧͰ • ΄ͳجຊૢ࡞ͬͯΈΑ͔
• ؔͬͪΎ͏ศརͳΜ͕͋ͬͯͳ • ΄Μ·࡞ਤָͳΜ • ύοέʔδͯ 4
Today’s Menu • RͬͯͳΜͶΜ • RStudioͬͯͷ͕͋ΜͶΜ • ·ͣΠϯετʔϧͰ • ΄ͳجຊૢ࡞ͬͯΈΑ͔
• ؔͬͪΎ͏ศརͳΜ͕͋ͬͯͳ • ΄Μ·࡞ਤָͳΜ • ύοέʔδͯ 5
• ओʹ౷ܭղੳతͰ͍ͬͯΔਓଟ • ͳͷͰຊͷ͓౷ܭղੳʹͭͳ͕Δ͓ • ͍ΘΏΔʮ౷ܭιϑτʯͱࢥ͍ͬͯͩ͘͞ • จॻ࡞࠷ۙͷྲྀߦΓ • ແྉ͔ͭΦʔϓϯιʔε
• ແྉͰ୭Ͱ͑Δ • ֦ுੑߴ͍ʢύοέʔδ͕͍ͬͺ͍ʣ RͬͯͳΜͶΜ 6 Rϓϩάϥϛϯάݴޠ
ా ଜɹ༞ ؔ େ ֶ 7
• ໊લɿాଜ༞ʢͨΉΒΏ͏ʣ • ॴଐɿؔେֶ֎ࠃޠֶ෦ • ઐɿୈೋݴޠशಘɼ৺ཧݴޠֶ • Rྺɿ͓ͦΒ͘6͘Β͍ • SapporoRͱ͍͏ࡳຈʹߦ͖͍ͨΦτφͷͨΊ
ͷΠϕϯτͷୈ1ճͷͱ͖ʹॳΊͯ৮ͬͨ • ※ͨͩ͠ࢲΞϝϦΧʹ͍·ͨ͠ ಥવͷ 8 ࣗݾհ
• RͳΒͳΜͰͰ͖ΔͱݴͬͯաݴͰͳ͍ • ΈΜͳ͕RΛ͍ͬͯΔ͔Β • RͷڭՊॻΠϯλʔωοτͱݴ͍͍ͬͯ • Θ͔Βͳͯ͘ΜͰΔਓҰਓ͡Όͳ͍͠ɼॿ͚ͯ͘ ΕΔਓͨ͘͞Μ͍Δ •
࠶ݱͱڞ༗͕༰қ • ಉ͡σʔλͱಉ͡εΫϦϓτ͕͋Εੳ݁Ռ͕࠶ݱ Մೳ • εΫϦϓτͱͯ͢͜͠ͱͰɼੳσʔλͷՄࢹԽ ͳͲ͕͍ͭͰͲ͜Ͱ୭ͱͰ RͬͯͳΜͶΜ 9 ͳͥRΛΕͱݴΘΕΔ͔
• ύιίϯ͕ۤख • RStudio͑ͳΜͱ͔ͳΔͷͰͱ • σΟϨΫτϦͱ͔۠Γจࣈͱ͔͘Β͍Θ͔͍ͬͯΕ͍͍ͷͰ • ίϚϯυΛଧͪࠐΉͱ͍͏ͷ͕ۤख • ϙνϙνͰ࠶ݱڞ༗Ͱ͖ͳͯ͘ࠔΔ…
• ࣗͰߟ͑ͯଧͭ͜ͱ͋Δ͕ɼجຊతʹʮ୭͔ͷਅࣅʯΛ͢Ε े • ӳޠ͕ۤख • ͱΓ͋͑ͣɼ௲ΓͷޡΓʹର͢Δawareness͚͍͖ͩ͋͛ͯ·͠ΐ ͏ • ຊޠࢿྉ͚ͩͰ͑ΔΑ͏ʹͳΔͱࢥ͍·͕͢ RͬͯͳΜͶΜ 10 RίϫΠίϫΠපͷݪҼ
Today’s Menu • RͬͯͳΜͶΜ • RStudioͬͯͷ͕͋ΜͶΜ • ·ͣΠϯετʔϧͰ • ΄ͳجຊૢ࡞ͬͯΈΑ͔
• ؔͬͪΎ͏ศརͳΜ͕͋ͬͯͳ • ΄Μ·࡞ਤָͳΜ • ύοέʔδͯ 11
• RStudioͱ • RΛ͍͘͢͢ΔͨΊͷιϑτ • Rͱಉ༷ʹແঈ • ͳͥRStudioʁ • https://speakerdeck.com/tam07pb915/nagoyar17
• ॳ৺ऀɼʮੳʯͱ͔Ҏલͷͱ͜ΖͰͭ·͖͕ͮ ͪ… • ͦͷͭ·͖ͮͲ͜Ζʹ༏͘͠खΛͯ͋ͬͨ͠Γɼ ࡞ۀޮ͕͕͋ΔΑ͏ͳػೳΛඋͯ͋͠Δ RStudioͬͯͷ͕͋ΜͶΜ 12 ॳ৺ऀͦ͜RStudioΛ
Today’s Menu • RͬͯͳΜͶΜ • RStudioͬͯͷ͕͋ΜͶΜ • ·ͣΠϯετʔϧͰ • ΄ͳجຊૢ࡞ͬͯΈΑ͔
• ؔͬͪΎ͏ศརͳΜ͕͋ͬͯͳ • ΄Μ·࡞ਤָͳΜ • ύοέʔδͯ 13
1. ݕࡧΤϯδϯͰʮr projectʯͱೖྗ͢Δ͔ɼhttp://www.r-project.org 2. download RΛΫϦοΫʢจষதʹ͋Γ·͢ʣ 3. ਖ਼Ͳ͜Ͱ͍͍ΜͰ͕͢ɼಛʹཧ༝͕ͳ͚ΕJapan͔Β1ͭબ ʢͲ͜ͰOKʣ 4.
ࣗͷύιίϯͷOSΛΫϦοΫ 1. MacͳΒ.pkgͱ͍͍ͭͯΔͷͰɼWindowsinstall R for the first time ΛΫϦοΫͯ͠.exeͷ࣮ߦϑΝΠϧ 2. όʔδϣϯͱΓ͋͑ͣ࠷৽൛Ͱ 5. ͋ͱμϯϩʔυͨ͠ϑΝΠϧΛμϒϧΫϦοΫͰ։͍ͯɼࢦࣔʹ ͕ͨͬͯ͠ਐΊΔ͚ͩ 6. ಛʹԿ͢Δඞཁͳ͘ɼʮ࣍ʯΛԡ͚ͩ͢ͰΑ͍ ·ͣΠϯετʔϧ 14 RΛ͍ΕͯΈ·͠ΐ͏
None
None
None
None
ՋΛ࣋ͯ༨ͨ͠ํ • ࠓΠϯετʔϧͨ͠RΛΞϯΠϯετʔϧͯ͠ɼ ͏Ұಉ͡खॱͰRΛΠϯετʔϧͰ͖Δ͔ ͬͯΈ·͠ΐ͏
• Ξοϓσʔτ͍ͨ͠߹࠶৽͍͠ͷΛΠ ϯετʔϧ • ৽͍͠όʔδϣϯͩͱɼΑ͘͏ύοέʔδ͕ ରԠ͍ͯ͠ͳ͍ͳͲͷ߹͕͋Δ • RͷόʔδϣϯͱύοέʔδͷόʔδϣϯΛཁ֬ ೝʢࠓճͷߨशͰؾʹ͠ͳͯ͘େৎͰ͢ •
Windows OSͷΑ͏ʹৗʹߋ৽ߋ৽ͱ͔͢Δඞཁ ͳ͍ ·ͣΠϯετʔϧ 20 Rͷόʔδϣϯʹ͍ͭͯ
None
None
• Windows • ελʔτ->ϓϩάϥϜ-> R • σϑΥϧτͷΠϯετʔϧઃఆͰσεΫτοϓʹγϣʔτΧο τΛ࡞ΔͷͰ͔ͦ͜ΒͰOK • i386
-> 32Ϗοτ൛ • x64 -> 64Ϗοτ൛ • ίϯτϩʔϧύωϧ->γεςϜͱηΩϡϦςΟ->γεςϜͰϏο τͷ֬ೝ͕Մೳ • Mac • Application -> R.app • Launchpad -> RͷΞΠίϯΛΫϦοΫ ·ͣΠϯετʔϧ 23 Rͷىಈͱऴྃ
• ͳΜ͔͍Ζ͍Ζॻ͍ͯ͋ͬͯͱΓ͋͑ͣɼ ʮ>ʯ͕Ұ൪Լʹग़͍ͯΕOK • RΛऴྃͤ͞Δͱ͖ • ଞͷΞϓϦέʔγϣϯͱಉ༷ʹɼʮด͡Δʯ Ϙλϯ • >ʹଓ͚ͯq()ͱೖྗ
• ʮ࡞ۀεϖʔε(workspace imageʣΛอଘ͠ ·͔͢ʁʯͱฉ͔ΕΔ-> ࠓʮ͍͍͑ʯ ·ͣΠϯετʔϧ 24 Rͷىಈͱऴྃ
1. ݕࡧΤϯδϯͰʮr studioʯͱೖྗ͢Δ͔ɼhttps:// www.rstudio.com 2. Download RStudioΛΫϦοΫ 3. RStudio DesktopͷDownloadΛΫϦοΫ
4. ࣗͷύιίϯͷOSʹ͋ͬͨΠϯετʔϥʔΛΫ ϦοΫ 5. ͋ͱμϯϩʔυͨ͠ϑΝΠϧΛμϒϧΫϦοΫͰ ։͍ͯɼࢦࣔʹ͕ͨͬͯ͠ਐΊΔ͚ͩ 6. ಛʹԿ͢Δඞཁͳ͘ɼʮ࣍ʯΛԡ͚ͩ͢ͰΑ͍ ·ͣΠϯετʔϧ 25 RStudioΛ͍ΕͯΈ·͠ΐ͏
None
None
None
ίϯιʔϧ มͷ֬ೝ ΧϨϯτσΟϨ ΫτϦϓϩο τɼύοέʔδ ɼ ϔϧϓը໘ͳͲ
9K
• ʮRɹΩʔϫʔυʯͰάάΔ • ݕࡧΤϯδϯͰͳ͔ͳ͔ώοτ͠ͳ͍߹… • seekR (http://seekr.jp) • RjpWiki (http://www.okadajp.org/RWiki/)
• R-Tips (http://cse.naro.affrc.go.jp/takezawa/r- tips/r.html) • RʹΑΔ౷ܭॲཧʢhttp://aoki2.si.gunma-u.ac.jp/ R/ʣ • ͳͲɼRʹಛԽͨ͠ௐํ͕͓͢͢Ί 9K 31 RͰࠔͬͨͱ͖
Today’s Menu • RͬͯͳΜͶΜ • RStudioͬͯͷ͕͋ΜͶΜ • ·ͣΠϯετʔϧͰ • ΄ͳجຊૢ࡞ͬͯΈΑ͔
• ؔͬͪΎ͏ศརͳΜ͕͋ͬͯͳ • ΄Μ·࡞ਤָͳΜ • ύοέʔδͯ 32
• RStudioΛىಈʢىಈͷํRͱಉ͡ʣ • RStudioͰʮ৽͘͠ʯԿ͔Λ࢝ΊΔͱ͖ʹඞͣ ʮϓϩδΣΫτʯΛ࡞Δ جຊૢ࡞ 33 RStudioͷ४උ
• RStudioͰԿ͔Λੳ͢Δͱ͖ͷڥʁͷΑ͏ͳͷͷ୯Ґ • ಛఆͷσΟϨΫτϦʢϑΥϧμʣʹ࡞ΒΕΔ • ͱͱ͋ΔϑΥϧμͰྑ͍͠ϓϩδΣΫτΛ࡞Δࡍʹ৽͘͠ ϑΥϧμΛ࡞ͬͯΑ͍ • ݚڀ͓ࣄ͝ͱʹϑΥϧμ͚͞Ε͍ͯͨΒɼͦͷϑΥϧμʹ ϓϩδΣΫτΛ࡞ͬͯஔ͘ͱΑ͍
• ʮR࿅शʯΈ͍ͨͳϑΥϧμΛ࡞ͬͯͦ͜ʹϓϩδΣΫτஔ͍ͯ OK 34 ϓϩδΣΫτʁʁʁ
35 ৽͘͠࡞ΔͳΒݚڀࣄ͝ͱͷ໊ લΛ͚ͭͨσΟϨΫτϦΛ͚ͭΔ (->New Directory->Empty Projectʣ ͏͢Ͱʹ࡞ۀʹؔ࿈͢ΔϑΝΠϧ ͳͲͷೖͬͨϑΥϧμ͕͋ΔͳΒͦ ͜ʹ࡞Δ(->Exsiting Directory)
RStudioͷ४උ جຊૢ࡞
• ϓϩδΣΫτΛ৽͘͠࡞ͬͨΒɼ·ͣ࠷ॳʹඞͣ৽͍͠RεΫϦϓτ ϑΝΠϧΛ࡞ΔʢࢀরɿʮίϯιʔϧϕλଧͪଔۀɿεΫϦϓτΤ σΟλΛ͓͏ʯʢhttps://speakerdeck.com/tam07pb915/nagoyar14) • ͦͯ͠ඞ໊ͣલΛ͚ͭͯอଘ • εΫϦϓτΤσΟλΛ͏ํ͕ઈରʹྑ͍ʢੜRͰʣ • ίϯιʔϧʹଧͪࠐΉͷΛͱΓ͋͑ͣΊΔʢ͋ͱʹ͢ඞཁͷ
ͳ͍࡞ۀҎ֎ʣ<-झຯͷΑ͏ʹR͏ਓҎ֎εΫϦϓτΤσΟλ • ্ҹ࿈ଧͰཤྺදࣔ͠ͳͯ͘εΫϦϓτΤσΟλʹίʔυΛॻ ͍͍͚ͯཤྺΔ • ԿߦͰҰؾʹίʔυΛ࣮ߦͰ͖Δ جຊૢ࡞ 36 RStudioͷ४උ
ίϯιʔϧͬͯͳΜͧ ͜Ε 37
Windows൛ͩͱ͜͜ 38
RStudioͩͱ͜͜ 39
εΫϦϓτΤσΟλ 40
ϑΝΠϧ->৽͍͠εΫϦϓτ 41
͢Δͱ͜Μͳײ͡ʹ ͍͕ͭ͜εΫϦϓτΤσΟλ 42
Macͩͱ͜Μͳײ͡ ͜ΕΫϦοΫ͢Δ͚ͩͰOK 43
RStudioͩͱ͜Μͳײ͡ File -> New File ->R Script·ͨΞΠίϯ͔Β·ͨCtrl+Shift+N 44
ΤσΟλʹଧͪࠐΜͰ Ctrl+Rʢ·ͨF5ʣͰ࣮ߦ ʢMacͳΒ⌘ʴreturnɼRStudioͳΒCtrl + Enterʣ 45
ϑΝΠϧ->อଘʢ·ͨCtrl+Sʣ ֦ுࢠͳΜͰ͍͍͕ɼtxtʹ͢Δ ͱ͖ϑΝΠϧͷछྨΛมߋ 46
※·ͩRͬͯͳ͍
Today’s Menu • RͬͯͳΜͶΜ • RStudioͬͯͷ͕͋ΜͶΜ • ·ͣΠϯετʔϧͰ • ΄ͳجຊૢ࡞ͬͯΈΑ͔ʢŗşƄŘƃʣ
• ؔͬͪΎ͏ศརͳΜ͕͋ͬͯͳ • ΄Μ·࡞ਤָͳΜ • ύοέʔδͯ 48
• “>”͕දࣔ͞Ε͍ͯΔʹೖྗडத • εΫϦϓτΤσΟλʹ໋ྩΛॻ͖ɼCtrl + Enter (⌘ + EnterʣͰ࣮ߦ •
શ֯μϝθολΠʢಛʹશ֯εϖʔεݟ͑ͳ͍ ͷͰؾ͍ͮͨΒೖ͍ͬͯͨΓ͢Δʣ • େจࣈͱখจࣈ͔ͬ͠Γ۠ผ • ()ͷલޙه߸ͷલޙͷ֯εϖʔεؔͳ͍ جຊૢ࡞ 49 ҙࣄ߲
• ͏ԋࢉه߸࣍ͷ௨Γ • ͠ࢉɿʴʢΩʔϘʔυʹΑͬͯҧ͍·͕͢ӈͷํʣ • Ҿ͖ࢉɿ-ʢϋΠϑϯͰ͋ͬͯμογϡΞϯμʔόʔʹ͋Βͣʣ • ֻ͚ࢉɿ*ʢΩʔϘʔυʹΑͬͯҧ͍·͕͢ӈͷํʣ※MacͷUSΩʔϘʔυͳΒ8 • ׂΓࢉɿ/ʢΩʔϘʔυʹΑͬͯҧ͍·͕͢ӈԼʣ
• ྦྷɿ^ʢΩʔϘʔυʹΑͬͯҧ͍·͕͢ӈͷํʹ͋Γ·͢ΑͶʣ※MacͷUS ΩʔϘʔυͳΒ6 جຊૢ࡞ 50 ࢛ଇԋࢉ
• ࣜΛೖྗͯ͠ɼEnterΛԡ͢ جຊૢ࡞ 51 ࢛ଇԋࢉ 9+7 60-13 4*3 50/10 (24+6)*44/10
• ࣜΛೖྗͯ͠ɼEnterΛԡ͢ جຊૢ࡞ 52 ࢛ଇԋࢉ 9+7 16 60-13 47 4*3
12 50/10 5 (24+6)*44/10 132
• ࣜΛೖྗͯ͠ɼEnterΛԡ͢ جຊૢ࡞ 53 ྦྷ 5^2 #5ͷ2 10^4 #10ͷ4 #←͜ΕίϝϯτΞτͷҹͰ͢ɻ#ͷ͋ͱʹଓ͚ͯ
จষΛॻ͘ͱɼ໋ྩͱ࣮ͯ͠ߦ͞Ε·ͤΜʢ˞ผʹ͜ ͜Ͱଧͨͳͯ͘OKʣ
※͜Ε͋͘·ͰRʹ׳Εͯ Β͏ͨΊͷ࿅शͰ͢ɻຊ൪ ͔࣍Β
• ໋ྩͷ్தͰEnterΩʔΛԡͯ͠͠·ͬͨΑ͏Ͱ͢ • +->ʮ·ͩೖྗऴΘͬͯΜͰʁʯͱݴ͍ͬͯ·͢ • +ʹଓ͚ͯೖྗͯ͠OK • ؾʹͳΔํɼEscΩʔʢΩʔϘʔυࠨ্ʣΛԡͯ͠ ͍ͩ͘͞ ؔ
55 >͕+ʹͳͬͨϯΰ > 9+ +
Today’s Menu • RͬͯͳΜͶΜ • RStudioͬͯͷ͕͋ΜͶΜ • ·ͣΠϯετʔϧͰ • ΄ͳجຊૢ࡞ͬͯΈΑ͔
• ؔͬͪΎ͏ศརͳΜ͕͋ͬͯͳ • ΄Μ·࡞ਤָͳΜ • ύοέʔδͯ 56
• ݱ࣮ͷͬͱෳࡶͰେྔͷσʔλΛॲཧ͢Δͷ͕ؔ • ؔ • ༩͑ΒΕͨҾʹରͯ͠ॲཧΛฦ͢ • RͰͳʹ͔Γ͍ͨ->ͦΕ͕Ͱ͖Δؔʢͦͷؔ ͕͑Δύοέʔδʣ୳͠ •
()Ͱׅͬͯ()ʹҾΛೖΕΔ • q()ؔ ؔ 57 ؔͱ
• sqrtؔ • ͯ͞ɼ͜ΕͳΜͷؔͰ͠ΐ͏ʁ ؔ 58 ؔΛͬͯΈΔ > sqrt(2)ɹɹ >
sqrt(3) > sqrt(100) > sqrt(144)
• sqrtؔ • ͯ͞ɼ͜ΕͳΜͷؔͰ͠ΐ͏ʁ ؔ 59 ؔΛͬͯΈΔ > sqrt(2)ɹɹɹ1.414214 >
sqrt(3) 1.732051 > sqrt(100) 10 > sqrt(144) 12 A.ɹฏํࠜ
• ݱ࣮ͷσʔλॲཧʹ͔ܽͤͳ͍͏Ұͭͷେࣄ ͳཁૉ͕ม • ม • 1ͭҎ্ͷࣈจࣈྻͳͲͷΛ·ͱΊ͓ͯ ͘༰Ε • มʢ༰Εʣͷ໊લΛݺͼग़͢ͱࣈͷηο
τ͕ݺͼग़ͤΔ ؔ 60 มͱ
ؔ 61 มͱ 1 2 3 4 ΓΜ͝ʢࣈʣ1ݸͣͭͰͳ͘ɼͦΕ͕ೖͬͨΧΰʹؔΛద༻ͨ͠Γ͍ͯ͘͠
• kagoͱ͍͏มʹ1~4ͷࣈΛೖͯ͠Έ·͠ΐ͏ • c()ؔɿෳͷཁૉΛ·ͱΊΔؔ • <-ʢෆ߸+ϋΠϑϯʣɿҹʢˡʣͷҙຯʢٯ͖Մʣ • <-=Ͱ༻Մೳ • ʮ1ͱ2ͱ3ͱ4Λ·ͱΊͯkagoͱ͍͏มʹೖ͍ͯͩ͘͠͞Ͷʯͱ
͍͏໋ྩ • มͷ໊લΛଧͬͯEnter -> ʮมͷதݟ͍ͤͯͩ͘͞ʯ ؔ 62 มʹΛೖ > kago <-c(1,2,3,4) > kago ม࡞Δ ->த֬ೝͱ͍͏ ྲྀΕΛบʹ͢Δ
• kagoͷத͜Μͳײ͡ • ͜ͷkagoʹରͯ͠sqrtؔΛ࣮ߦͯ͠Έ·͢ ؔ 63 มʹରͯؔ͠Λ࣮ߦ kago [1] 1
2 3 4 sqrt(kago) [1] 1.000000 1.414214 1.732051 2.000000
ؔ 64 มʹରͯؔ͠Λ࣮ߦ sqrt(1) sqrt(2) sqrt(3) sqrt(4) sqrt(kago) ͲͪΒָ͕͔Ұྎવ
• summary()ؔɿجຊ౷ܭྔͷࢉग़ • table()ؔɿදͷ࡞ • sum()ؔɿ߹ܭͷࢉग़ • length()ؔɿσʔλͷݸͷࢉग़ ؔ 65
جຊతͳ͚ؔͩͰ…
• mean()ؔɿฏۉͷࢉग़ • max()ؔɿ࠷େͷࢉग़ • min()ؔɿ࠷খͷࢉग़ • median()ؔɿதԝͷࢉग़ • sd()ؔɿඪ४ภࠩͷࢉग़
ؔ 66 جຊతͳ͚ؔͩͰ…
• help()ؔ • ྫɿhelp(mean)ͷΑ͏ʹʢʣʹؔΛೖΕΔ • ؔͷઆ໌͕ݟΕΔʢRStudioͳΒӈԼͷϖΠϯʹݱΕ·͢ʣ • આ໌ӳޠͰ͕͢… • usage:
͍ํͷ֓ཁ • argument: ҾʹऔΔͷͷઆ໌ • Example: ͍ํͷྫ • ͳͲɼܗ͕ܾࣜ·͍ͬͯΔͷͰݟΔϙΠϯτ͑͞ԡ͑͞Εා͘ͳ ͍Ͱ͢ ؔ 67 جຊతͳ͚ؔͩͰ…
• ؔΛ͏ͷR࡞ۀͷجຊͷ • ͋ͱͰ·͍͔͍ͨͭؔ͘·͢ͷͰ3ͭ͘Β͍ ֮͑ͯؼ͍ͬͯͩ͘͞ • ()ͷதʹҾΛೖΕ·͢ • ͲΜͳҾΛऔΔ͔ɼ͍ͭ͘ͷҾΛऔΔ͔ͳ ͲؔʹΑͬͯҧ͍·͢
ؔ 68 ؔʹ͍ͭͯͷ·ͱΊ
• ߦྻͱ • ཁૉΛॎͱԣʹฒͨදܗࣜͷͷʢͱཧղ͠ ͍ͯͩ͘͞ʣ • ͜͏͍͏ͷͰ͢ˠ ؔ 69 ߦྻΛѻͬͯΈΔ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
ߦ
Ϊϣʔ
Ϊϣʔ
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
ྻ
Ϩ π
Ϩ π
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
• matrix (ཁૉɼnrowɼncolʣ • ཁૉɿߦྻͷத • nrowɿߦʢྫɿnrow = 3ʣ •
ncolɿྻʢྫɿncol = 4ʣ ؔ 85 ߦྻΛ࡞͢Δmatrixؔ
• matrixؔͰԼͷߦྻΛ࡞ͯ͠Έ·͠ΐ͏ ؔ 86 ߦྻΛ࡞͢Δmatrixؔ 1 5 9 13 2
6 10 14 3 7 11 15 4 8 12 16
• ͱ͍͍͕ͯ͠… ؔ 87 ߦྻΛ࡞͢Δmatrixؔ 1 5 9 13 2
6 10 14 3 7 11 15 4 8 12 16 matrix(c(1,2,3,4,5,6,7,8,9,+ 10,11,12,13,14,15,16),nrow=+ 4,ncol=4) matrix(1:16,nrow=4,ncol=4) 1:16ʮ1͔Β16·Ͱʯ ͱ͍͏ҙຯʹͳΔ
• ฒํΛߦํ༏ઌʹ͍ͨ͠߹ ؔ 88 ߦྻΛ࡞͢Δmatrixؔ matrix(1:16,nrow=4,ncol=4,byrow=T) 1 2 3 4
5 6 7 8 9 10 11 12 13 14 15 16
• ͜Ε͚ͩͰɼߦྻΛ͋ͱͰ͏͜ͱ͕ෆՄೳ ؔ 89 ߦྻͷཁૉʹΞΫηε >matrix(1:16,nrow=4,ncol=4,byrow=T) [,1] [,2] [,3] [,4]
[1,] 1 5 9 13 [2,] 2 6 10 14 [3,] 3 7 11 15 [4,] 4 8 12 16
• hyouͱ͍͏มʹอଘ • มʹอଘ͢ΔͱɼmatrixؔΛ࣮ߦͯ͠ߦྻ ͕ίϯιʔϧʹදࣔ͞Ε·ͤΜ͕ͦΕͰOK • ໋ྩΛ࣮ߦͯ͠ɼR͕͓ͱͳ͍͠ͱ͖͏·͘ ͍͍ͬͯ·͢ ؔ 90
ߦྻͷཁૉʹΞΫηε >hyou<-matrix(1:16,nrow=4,ncol=4,byrow=T)
• 2ߦʹΞΫηε->hyou[2,] • 2ྻʹΞΫηε->hyou[,2] ؔ 91 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4 [2,] 5 6 7 8 [3,] 9 10 11 12 [4,] 13 14 15 16 ߦྻͷཁૉΛऔΓग़͢
• 2ߦʹΞΫηε->hyou[2,] • 2ྻʹΞΫηε->hyou[,2] ؔ 92 > hyou[2,] [1] 5
6 7 8 > hyou[,2] [1] 2 6 10 14 ߦྻͷཁૉΛऔΓग़͢
• ෳߦɾෳྻΛ·ͱΊͯऔΓग़͍ͨ͠߹c ؔΛ͏ʢʮ1ߦ͔Β3ߦʯίϩϯʣ ؔ 93 ߦྻͷཁૉΛऔΓग़͢ >hyou[c(2,4),] #2ߦͱ4ߦ [,1] [,2]
[,3] [,4] [1,] 5 6 7 8 [2,] 13 14 15 16
• ߦʢΪϣʔʣԣɼྻʢϨπʣॎ • matrix(ཁૉ, nrow, ncolʣ • औΓग़͢ͱ͖[]Λ͏ • hyou[2,]
#2ߦ • hyou[,2] #2ྻ • hyou[2,2] #2ߦͷ2ྻ ؔ 94 ߦྻͷ·ͱΊ
ʮݱ࣮ͷσʔλݟͨ͜ͱ͋Μ ͷʁͶ͑ʁmatrixؔͰଧͪ ࠐΉͷʁഅࣛͳͷʁʯ
ʮߦྻ͡Όจࣈͱ͔ѻ ͑ͳ͍Ͱ͠ΐʁʯ
σʔλϑϨʔϜ
• จࣈࣈͳͲɼܕͷҧ͏σʔλΛදܗࣜͰฒ ͨͷ • σʔλϑϨʔϜͷಡΈࠐΈʹνϟϨϯδͯ͠Έ· ͠ΐ͏ ؔ 98 σʔλϑϨʔϜܗࣜ
• read.table() ؔ • “ϑΝΠϧ໊” • headerɿݟग़͠ߦͷ༗ແ • sepɿ۠Γจࣈͷࢦఆ •
read.table(“ϑΝΠϧ໊”, header = T or F, sep=“\t”or “,”) • csvϑΝΠϧͷͱ͖read.csv()ؔ ؔ 99 ֎෦σʔλͷಡΈࠐΈ ʮλϒʯͷҙຯɻWindows ͳΒ¥t
• σʔλɿhttp://bit.ly/R-workshop_20180602 • ϑΝΠϧ -> ܗࣜΛࢦఆͯ͠μϯϩʔυ->ΧϯϚ۠Γͷ ʢcsvɼݱࡏͷγʔτʣ • ϑΝΠϧ໊ͷޙΖͷ΄͏ʹ͋Δʮ -
γʔτ1 ʯআ͍ͯͩ͘͠͞ • RStudioͷϓϩδΣΫτϑΝΠϧ͕͋ΔϑΥϧμʹDL • ݸਓతʹɼExcelͳͲͷγʔτΛಡΈࠐΉ߹csvϑΝΠϧͱͯ͠ γʔτΛผʹอଘ͢Δ͜ͱΛ͓͢͢ΊʢΫϦοϓϘʔυ͔Βͩͱɼಡ ΈࠐΜͩσʔλ͕ޙ͔ΒΘ͔Βͳ͍ͨΊʣ • ޙʹ͢ඞཁͷͳ͍࡞ۀͳΒɼγʔτͷͳ͔ͷΛίϐʔͯ͠ΫϦο ϓϘʔυ͔ΒಡΈࠐΉ ؔ 100 ֎෦σʔλͷಡΈࠐΈ
• ࣍ͷΑ͏ͳίʔυͰσʔλΛಡΈࠐΈ • ϑΝΠϧ໊””Ͱ͘͘Δ͜ͱ • ϑΝΠϧ໊ʹ֦ுࢠΛඞؚͣΊΔ͜ͱ ؔ 101 ֎෦σʔλͷಡΈࠐΈ dat
<- read.table(“XXXX.csv”,header=T, sep=“,”) #·ͨ dat <-read.csv(“XXXX.csv”,header=T)
• ಡΈࠐΜͩσʔλͷߦ͚ͩͰݟ͍ͨ߹ʹ head()ؔΛ༻ • head(dat,10)ͷΑ͏ʹɼΧϯϚͰ۠ͬͯҙͷΛ ༩͑Δͱɼͦͷߦ͚ͩදࣔ • RStudioͳΒӈ্ͷϖΠϯͰdatͱ͍͏ม͕࡞ΒΕ ͨ͜ͱ͕֬ೝͰ͖ɼΫϦοΫ͢Δͱத͕ݟΕ·͢ ؔ
102 ಡΈࠐΜͩσʔλͷ֬ೝ >dat >head(dat)
• meanؔͰฏۉΛٻΊͯΈ·͠ΐ͏ ؔ 103 ಡΈࠐΜͩσʔλʹؔΛద༻ >mean(dat)
• ͜͏ͳͬͯ͠·͏… ؔ 104 ಡΈࠐΜͩσʔλʹؔΛద༻ >mean(dat) Warning message: In mean.default(dat)
: argument is not numeric or logical: returning NA
• meanؔʹ༩͑ΒΕΔͷɼϕΫτϧʢ1ߦ·ͨ1ྻͷΈʣ • ؔʹΑͬͯѻ͑Δσʔλͷܕ͕ҧ͏ • dat[,2]ͷΑ͏ʹɼʮdatͷ2ྻʯͱ͢Δ • datͷޙΖʹ$Λ͚ͭͯɼdat$ClassA_Gr • σʔλϑϨʔϜܗࣜͰ$ͷޙʹྻ໊ΛࢦఆͰ͖Δ
ؔ 105 ಡΈࠐΜͩσʔλʹؔΛద༻ >mean(dat[,2]) >mean(dat$ClassA_Gr)
• ྻ͝ͱʹͰ͖ͳ͍ͷʁʁʁ ؔ 106 ಡΈࠐΜͩσʔλʹؔΛద༻ >mean(dat$ClassA_Gr) >mean(dat$ClassA_Vo) >mean(dat$ClassB_Gr) >mean(dat$ClassB_Vo)
• apply()ؔɿྻ·ͨߦ͝ͱʹؔΛద༻ • datͷ··ͩͱɼIDྻ·Ͱܭࢉ͞Εͯ͠·͏ • dat[,-1]ͱ͢Δͱɼʮ1ྻൈ͍ͯͶʯͷҙຯ ؔ 107 ಡΈࠐΜͩσʔλʹؔΛద༻ >apply(dat,
2, mean) 1ߦ͝ͱɼ2ྻ͝ͱ >apply(dat[,-1], 2, mean) ClassA_Gr ClassA_Vo ClassB_Gr ClassB_Vo 74.60 69.96 71.56 73.92
Today’s Menu • RͬͯͳΜͶΜ • RStudioͬͯͷ͕͋ΜͶΜ • ·ͣΠϯετʔϧͰ • ΄ͳجຊૢ࡞ͬͯΈΑ͔
• ؔͬͪΎ͏ศརͳΜ͕͋ͬͯͳ • ΄Μ·࡞ਤָͳΜ • ύοέʔδͯ 108
• ώετάϥϜ • ࢄਤ • ശͻ͛ਤ ࡞ਤ 109 ͬͯΈΔ͜ͱ
• ώετάϥϜ • ࢄਤ • ശͻ͛ਤ ࡞ਤ 110 ͬͯΈΔ͜ͱ
࡞ਤ 111 ώετάϥϜ Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60
65 70 75 80 85 90 0 1 2 3 4 5 6 7 Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60 65 70 75 80 85 90 0 1 2 3 4 5 6 7 >hist(dat$ClassA_Gr)
• ώετάϥϜ • ࢄਤ • ശͻ͛ਤ ࡞ਤ 112 ͬͯΈΔ͜ͱ
࡞ਤ 113 ࢄਤ Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60
65 70 75 80 85 90 0 1 2 3 4 5 6 7 Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60 65 70 75 80 85 90 0 1 2 3 4 5 6 7 >plot(dat$ClassA_Gr,dat$ClassA_Vo) ࢄਤجຊతʹ2มͷରԠؔͷਤࣔͳͷͰɼ2ͭ ͷϕΫτϧΛΧϯϚͰ۠ͬͯೖྗ
࡞ਤ 114 ࢄਤͷ Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60
65 70 75 80 85 90 0 1 2 3 4 5 6 7 Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60 65 70 75 80 85 90 0 1 2 3 4 5 6 7 >plot(dat$ClassA_Gr,dat$ClassA_Vo) ࢄਤجຊతʹ2มͷରԠؔͷਤࣔͳͷͰɼ2ͭ ͷϕΫτϧΛΧϯϚͰ۠ͬͯೖྗ σϑΥϧτͰx࣠ͱy͕࣠σʔλʹ߹Θ ͤͯઃఆ͞Εͯ͠·͏…
࡞ਤ 115 ࢄਤͷ Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60
65 70 75 80 85 90 0 1 2 3 4 5 6 7 Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60 65 70 75 80 85 90 0 1 2 3 4 5 6 7 >plot(dat$ClassA_Gr,dat$ClassA_Vo,x lim=c(0,100),ylim=c(0,100)) xlimx࣠ͷ෯Λࢦఆ͢Δʢ͜͜Ͱ0͔Β100·Ͱʣ ylimy࣠ͷ෯Λࢦఆ͢Δʢ͜͜Ͱ0͔Β100·Ͱʣ ݟ͕ͨશવมΘͬͯ·͢ΑͶɻਤࣔ ศརͰ͕͢ɼʮݟͤํʯͰ͍ͣͿΜσʔ λ͕ҧ͏ͷͷΑ͏ʹݟ͑ͯ͠·͏ͷͰ ҙ
࡞ਤ 116 ࢄਤͷ Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60
65 70 75 80 85 90 0 1 2 3 4 5 6 7 Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60 65 70 75 80 85 90 0 1 2 3 4 5 6 7 >plot(dat$ClassA_Gr,dat$ClassA_Vo,x lim=c(0,100),ylim=c(0,100),xlab=“Gr ammar”,ylab=“Vocabulary”) xlabx࣠ͷϥϕϧΛࢦఆ͢Δ ylaby࣠ͷϥϕϧΛࢦఆ͢Δ
• ώετάϥϜ • ࢄਤ • ശͻ͛ਤ ࡞ਤ 117 ͬͯΈΔ͜ͱ
࡞ਤ 118 ശͻ͛ਤ Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60
65 70 75 80 85 90 0 1 2 3 4 5 6 7 Histogram of dat$ClassA_Gr dat$ClassA_Gr Frequency 55 60 65 70 75 80 85 90 0 1 2 3 4 5 6 7 >boxplot(dat[,-1])
• RStudio • Export -> Save image or PDF (or
Copy to Clipboard) • R • ϑΝΠϧ->ผ໊Ͱอଘ->metafile • อଘͷܗ͍ࣜΖ͍ΖબΔ͕ɼmetafile͕͖Ε͍ ͳͷͰ͓͢͢Ίʢͨͩ͠PDFͰมͳઢೖΔͳͲͷ όά͕ىͬͨ͜Γ͢Δʣ ࡞ਤ 119 ඳ͍ͨਤͷอଘ
Today’s Menu • RͬͯͳΜͶΜ • RStudioͬͯͷ͕͋ΜͶΜ • ·ͣΠϯετʔϧͰ • ΄ͳجຊૢ࡞ͬͯΈΑ͔
• ؔͬͪΎ͏ศརͳΜ͕͋ͬͯͳ • ΄Μ·࡞ਤָͳΜ • ύοέʔδͯ 120
• R͕ఏڙ͍ͯ͠Δύοέʔδͨͬ͘͞Μ͋Δ • ͍Ζ͍Ζͳ͜ͱΛΖ͏ͱࢥ͏ͱύοέʔδΛ Πϯετʔϧ͠ͳ͍ͱ͍͚ͳ͍ • Πϯετʔϧͨ͋͠ͱʹԼͷ͓·͡ͳ͍͕ඞཁ ύοέʔδ 121 ศར͞Λ૿͢ύοέʔδ
>install.packages(“ύοέʔδ໊”) >library(ύοέʔδ໊) library()ؔͰ””ͳ͠Ͱ͍͚Δ͕ install.packages()ؔແཧͳͷͰҙ
• beeswarmύοέʔδͰ๘܈ਤΛඳ͖·͠ΐ͏ • ശͻ͛ਤʹॏͶॻ͖Ͱ͖Δ ύοέʔδ 122 ศར͞Λ૿͢ύοέʔδ >install.packages(“beeswarm”) >library(beeswarm) >beeswarm(dat)
>boxplot(dat[,-1]) >beeswarm(dat[,-1],add=T)
None
͓͠·͍