Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
XP に取り組むデータサイエンティストが思うこと
Search
Kenji Tanaka
March 29, 2023
Programming
1
620
XP に取り組むデータサイエンティストが思うこと
Kenji Tanaka
March 29, 2023
Tweet
Share
Other Decks in Programming
See All in Programming
MCPで実現するAIエージェント駆動のNext.jsアプリデバッグ手法
nyatinte
7
910
Google I/O recap web編 大分Web祭り2025
kponda
0
2.9k
🔨 小さなビルドシステムを作る
momeemt
2
550
decksh - a little language for decks
ajstarks
4
21k
【第4回】関東Kaggler会「Kaggleは執筆に役立つ」
mipypf
0
870
Ruby Parser progress report 2025
yui_knk
1
110
ゲームの物理
fadis
5
1.5k
オープンセミナー2025@広島LT技術ブログを続けるには
satoshi256kbyte
0
130
Scale out your Claude Code ~自社専用Agentで10xする開発プロセス~
yukukotani
9
2.6k
AWS Serverless Application Model入門_20250708
smatsuzaki
0
140
SOCI Index Manifest v2が出たので調べてみた / Introduction to SOCI Index Manifest v2
tkikuc
1
110
自作OSでDOOMを動かしてみた
zakki0925224
1
1.4k
Featured
See All Featured
Producing Creativity
orderedlist
PRO
347
40k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Designing for humans not robots
tammielis
253
25k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
900
Being A Developer After 40
akosma
90
590k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Six Lessons from altMBA
skipperchong
28
4k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Raft: Consensus for Rubyists
vanstee
140
7.1k
The Invisible Side of Design
smashingmag
301
51k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
570
Docker and Python
trallard
45
3.5k
Transcript
XP に取り組む データサイエンティストが思うこと 2023/03/28 田中 賢治
自己紹介 田中 賢治 • 2021/03 Uzabase 入社(3社目) • データサイエンスを始めたきっかけ: 2社目で悪質コメント分類のプロジェクト
を担当した時。それまでは Rails でバック エンドの開発をやってました。 • 趣味: 大学(UEC夜間在学中) • 最近ハマっていること: 大量の鶏皮から鶏油を抽出すること 2
3 初めての技術イベント登壇です。 暖かい目で見ていただけると嬉しいです。
この発表で伝えたいこと 4
データサイエンティストに対しても XP はいいぞ! 5
データサイエンティストのつらみ 6
1. PoC死 2. データを集めるのが大変 3. プロダクトへの組み込みが大変 4. … データサイエンティストのつらみ 7
1. PoC死 2. データを集めるのが大変 3. プロダクトへの組み込みが大変 4. … データサイエンティストのつらみ 8
XP で解消される 話をします
1. PoC死 9
1. PoC死 10 中島 洋一 . “AI導入の失敗あるある、「 PoC死」の罠とは。” . NewsPicks
. 2020/01/14 . https://newspicks.com/news/4494535/body/ “例えばよくあるのが「とりあえず作ってみよう。PoCの精度は 高ければ高いほどいいね!」とゴールが曖昧なままスタートす ることがあります。これでは、機械学習エンジニアとプラン ナー、マネージャーとで認識が違った状態でプロジェクトが進 んでしまいます。そしてPoCを作った後に、こうした認識の違い が明らかになり、炎上に近い「PoC死」を招くのです。”
1. PoC死 11 ゴールが曖昧なまま スタート ↓ 認識が違った状態で プロジェクトが進む ↓ PoC実装後に認識の違いが
明らかになり炎上
1. PoC死 12 XP があると なぜ「PoC死」しない??
1. PoC死 13 ストーリー 週次サイクル
1. PoC死 14 ゴールが曖昧なまま スタート ↓ 認識が違った状態で プロジェクトが進む ↓ PoC実装後に認識の違いが
明らかになり炎上 XP があると... 「ストーリー」でユーザーの価値 を明文化 ↓ 「週次サイクル」でゴールの認識 が揃った状態を保つ ↓ 「PoC死」しない
プロダクトマネー ジャーは mecab-ipadic-NEolo gd を辞書に指定した 業界推定モデルを訓 練した時のスコアを 知っている。 1. PoC死
15 ストーリー = ユーザーの価値を明文化したチケットのようなもの→ ビジ ネスサイドにも伝わる ユーザーは SPEEDA で企業情 報に新語を多く含む 企業に正しく業界が 紐づいていることを確 認できる。 実験のストーリーの例 実装のストーリーの例 NEologd を辞書にして実験 新語を扱うモデルになってる か確認 →
1. PoC死 16 週次サイクル → ゴールに向かってフィードバックサイクルを回す 実験 評価 フィードバック 実装
良い精度が出たら … … … … 施策のたびに実験のストーリーを書く ストーリー書く
1. PoC死 17 フィードバックサイクルを回して ユーザーに価値を届ける!
2. データを集めるのが大変 18
2. データを集めるのが大変 19 • データの居場所がわからない • アクセス権限をもらうための社内調整が大変 → チーム間連携の壁に阻まれる
2. データを集めるのが大変 XP はどうやって チーム間連携の壁を 超えているのか?? 20
全員同席 2. データを集めるのが大変 21
2. データを集めるのが大変 22 Product Team ソフトウェアエンジニア( SwE) データサイエンティスト( DS) サイトリライアビリティエンジニア(
SRE) テストエンジニア(TE) → Gather (リモートオフィス)に全員同席
23
24 SRE SwE + TE DS SwE + TE SwE
+ TE SwE + TE
わからないことは サクッと聞いて サクッと解決! → XP のバリューを共有しているからこそできること 2. データを集めるのが大変 25
2. データを集めるのが大変 26 XP のバリュー 1. コミュニケーション 2. シンプリシティ 3.
フィードバック 4. 勇気 5. リスペクト
3. プロダクトへの組み込みが大変 27
3. プロダクトへの組み込みが大変 28 • プロダクトによってインフラが違う • プロダクトによって言語が違う → スキルの壁に阻まれる
3. プロダクトへの組み込みが大変 29 XP はどうやって スキルの壁を 超えているのか??
3. プロダクトへの組み込みが大変 30 ペアプロ
3. プロダクトへの組み込みが大変 31 Product Team XP ソフトウェアエンジニア( SwE) データサイエンティスト( DS)
サイトリライアビリティエンジニア( SRE) テストエンジニア(TE)
3. プロダクトへの組み込みが大変 32 Product Team XP ソフトウェアエンジニア( SwE) テストエンジニア(TE) データサイエンティスト(
DS) サイトリライアビリティエンジニア( SRE) 「バリュー」「原則」「プラクティス」 の共有 • 常時ペアプロ • 常時 TDD • トランクベース開発 • 継続的デリバリー • ストーリー • 週次サイクル • 四半期サイクル • 朝会 • ふりかえり • …
3. プロダクトへの組み込みが大変 33 Product Team XP ソフトウェアエンジニア( SwE) テストエンジニア(TE) データサイエンティスト(
DS) サイトリライアビリティエンジニア( SRE) 「バリュー」「原則」「プラクティス」の 共有 • 常時ペアプロ • 常時 TDD • トランクベース開発 • 継続的デリバリー • ストーリー • 週次サイクル • 四半期サイクル • 朝会 • ふりかえり • … → 「プラクティス」を通じた連携 → 職種を超えたペアプロ
3. プロダクトへの組み込みが大変 34 スキルを補完し合い 相乗効果で成果を出す!
まとめ 35 データサイエンティストのつらみ PoC死 データを集めるのが大変 プロダクトへの組み込みが大変 ストーリー 週次サイクル 全員同席 ペアプロ
有効なプラクティス フィードバックサイクルを回して ユーザーに価値を届ける! わからないことは サクッと聞いてサクッと解決! スキルを補完し合い 相乗効果で成果を出す! 目指すもの
とはいえ、、 XP で全てが解決できるわけではない 36
37 精度を評価 R&D 実装 プロダクトマネージャー は mecab-ipadic-NEologd を辞書に指定した業界 推定モデルを訓練した 時のスコアを知ってい
る。 ユーザーは SPEEDA で企業情報に新語を多 く含む企業に正しく業界 が紐づいていることを 確認できる。 実験の実装 実験を実行し てスコアを出 力 精度が良かったら CD パイプライン - モデル訓練 - モデルリリース - API デプロイ TDD で実装 CI パイプライン - 自動テスト
38 精度を評価 R&D 実装 プロダクトマネージャー は mecab-ipadic-NEologd を辞書に指定した業界 推定モデルを訓練した 時のスコアを知ってい
る。 ユーザーは SPEEDA で企業情報に新語を多 く含む企業に正しく業界 が紐づいていることを 確認できる。 実験の実装 実験を実行し てスコアを出 力 精度が良かったら CD パイプライン - モデル訓練 - モデルリリース - API デプロイ TDD で実装 CI パイプライン - 自動テスト
39 精度を評価 R&D 実装 プロダクトマネージャー は mecab-ipadic-NEologd を辞書に指定した業界 推定モデルを訓練した 時のスコアを知ってい
る。 ユーザーは SPEEDA で企業情報に新語を多 く含む企業に正しく業界 が紐づいていることを 確認できる。 実験の実装 実験を実行し てスコアを出 力 精度が良かったら CD パイプライン - モデル訓練 - モデルリリース - API デプロイ TDD で実装 CI パイプライン - 自動テスト CD4ML ???