Upgrade to Pro — share decks privately, control downloads, hide ads and more …

XP に取り組むデータサイエンティストが思うこと

XP に取り組むデータサイエンティストが思うこと

Kenji Tanaka

March 29, 2023
Tweet

Other Decks in Programming

Transcript

  1. 自己紹介 田中 賢治 • 2021/03 Uzabase 入社(3社目) • データサイエンスを始めたきっかけ: 2社目で悪質コメント分類のプロジェクト

    を担当した時。それまでは Rails でバック エンドの開発をやってました。 • 趣味: 大学(UEC夜間在学中) • 最近ハマっていること: 大量の鶏皮から鶏油を抽出すること 2
  2. 1. PoC死 10 中島 洋一 . “AI導入の失敗あるある、「 PoC死」の罠とは。” . NewsPicks

    . 2020/01/14 . https://newspicks.com/news/4494535/body/ “例えばよくあるのが「とりあえず作ってみよう。PoCの精度は 高ければ高いほどいいね!」とゴールが曖昧なままスタートす ることがあります。これでは、機械学習エンジニアとプラン ナー、マネージャーとで認識が違った状態でプロジェクトが進 んでしまいます。そしてPoCを作った後に、こうした認識の違い が明らかになり、炎上に近い「PoC死」を招くのです。”
  3. 1. PoC死 14 ゴールが曖昧なまま スタート ↓ 認識が違った状態で プロジェクトが進む ↓ PoC実装後に認識の違いが

    明らかになり炎上 XP があると... 「ストーリー」でユーザーの価値 を明文化 ↓ 「週次サイクル」でゴールの認識 が揃った状態を保つ ↓ 「PoC死」しない
  4. プロダクトマネー ジャーは mecab-ipadic-NEolo gd を辞書に指定した 業界推定モデルを訓 練した時のスコアを 知っている。 1. PoC死

    15 ストーリー = ユーザーの価値を明文化したチケットのようなもの→ ビジ ネスサイドにも伝わる ユーザーは SPEEDA で企業情 報に新語を多く含む 企業に正しく業界が 紐づいていることを確 認できる。 実験のストーリーの例 実装のストーリーの例 NEologd を辞書にして実験 新語を扱うモデルになってる か確認 →
  5. 1. PoC死 16 週次サイクル → ゴールに向かってフィードバックサイクルを回す 実験 評価 フィードバック 実装

    良い精度が出たら … … … … 施策のたびに実験のストーリーを書く ストーリー書く
  6. 23

  7. 3. プロダクトへの組み込みが大変 32 Product Team XP ソフトウェアエンジニア( SwE) テストエンジニア(TE) データサイエンティスト(

    DS) サイトリライアビリティエンジニア( SRE) 「バリュー」「原則」「プラクティス」 の共有 • 常時ペアプロ • 常時 TDD • トランクベース開発 • 継続的デリバリー • ストーリー • 週次サイクル • 四半期サイクル • 朝会 • ふりかえり • …
  8. 3. プロダクトへの組み込みが大変 33 Product Team XP ソフトウェアエンジニア( SwE) テストエンジニア(TE) データサイエンティスト(

    DS) サイトリライアビリティエンジニア( SRE) 「バリュー」「原則」「プラクティス」の 共有 • 常時ペアプロ • 常時 TDD • トランクベース開発 • 継続的デリバリー • ストーリー • 週次サイクル • 四半期サイクル • 朝会 • ふりかえり • … → 「プラクティス」を通じた連携 → 職種を超えたペアプロ
  9. まとめ 35 データサイエンティストのつらみ PoC死 データを集めるのが大変 プロダクトへの組み込みが大変 ストーリー 週次サイクル 全員同席 ペアプロ

    有効なプラクティス フィードバックサイクルを回して ユーザーに価値を届ける! わからないことは サクッと聞いてサクッと解決! スキルを補完し合い 相乗効果で成果を出す! 目指すもの
  10. 37 精度を評価 R&D 実装 プロダクトマネージャー は mecab-ipadic-NEologd を辞書に指定した業界 推定モデルを訓練した 時のスコアを知ってい

    る。 ユーザーは SPEEDA で企業情報に新語を多 く含む企業に正しく業界 が紐づいていることを 確認できる。 実験の実装 実験を実行し てスコアを出 力 精度が良かったら CD パイプライン - モデル訓練 - モデルリリース - API デプロイ TDD で実装 CI パイプライン - 自動テスト
  11. 38 精度を評価 R&D 実装 プロダクトマネージャー は mecab-ipadic-NEologd を辞書に指定した業界 推定モデルを訓練した 時のスコアを知ってい

    る。 ユーザーは SPEEDA で企業情報に新語を多 く含む企業に正しく業界 が紐づいていることを 確認できる。 実験の実装 実験を実行し てスコアを出 力 精度が良かったら CD パイプライン - モデル訓練 - モデルリリース - API デプロイ TDD で実装 CI パイプライン - 自動テスト
  12. 39 精度を評価 R&D 実装 プロダクトマネージャー は mecab-ipadic-NEologd を辞書に指定した業界 推定モデルを訓練した 時のスコアを知ってい

    る。 ユーザーは SPEEDA で企業情報に新語を多 く含む企業に正しく業界 が紐づいていることを 確認できる。 実験の実装 実験を実行し てスコアを出 力 精度が良かったら CD パイプライン - モデル訓練 - モデルリリース - API デプロイ TDD で実装 CI パイプライン - 自動テスト CD4ML ???