Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
REALAPS-omniを利用した全方位画像による視環境評価技術について
Search
Tarosa
August 27, 2019
Technology
0
380
REALAPS-omniを利用した全方位画像による視環境評価技術について
VTLが提供する視環境評価ツールREALAPS-omniと関連ツールの説明と、視環境評価技術の説明を行なった資料です。
Tarosa
August 27, 2019
Tweet
Share
More Decks by Tarosa
See All by Tarosa
AIで宇宙甲子園 缶サット部門 近畿大会のテーマソングを作る
tarosay
0
11
mrubyとWakayama.rb ~mrubyと共に歩んだ10年~
tarosay
0
130
【THETA撮影会 in 大阪】建築・照明デザイナーとエンジニアのための視環境設計 #4
tarosay
0
230
評価画像変換の簡単な説明
tarosay
0
170
建築・照明デザイナーとエンジニアのための視環境設計
tarosay
0
260
模擬人工衛星DangoSatプロジェクト
tarosay
0
260
全方位色彩解析ソフト REALAPS Omni Colorのマニュアル
tarosay
0
180
だんごサットの紹介
tarosay
0
180
Tellusで、串本のおいしいお刺身を!
tarosay
1
460
Other Decks in Technology
See All in Technology
RALGO : AIを組織に組み込む方法 -アルゴリズム中心組織設計- #RSGT2026 / RALGO: How to Integrate AI into an Organization – Algorithm-Centric Organizational Design
kyonmm
PRO
3
1.1k
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.6k
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.4k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
61k
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
330
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
#22 CA × atmaCup 3rd 1st Place Solution
yumizu
1
160
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
11
6.4k
プロンプトエンジニアリングを超えて:自由と統制のあいだでつくる Platform × Context Engineering
yuriemori
0
420
Cloud WAN MCP Serverから考える新しいネットワーク運用 / 20251228 Masaki Okuda
shift_evolve
PRO
0
150
Featured
See All Featured
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
68
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
From π to Pie charts
rasagy
0
110
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
We Have a Design System, Now What?
morganepeng
54
8k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.5k
A Tale of Four Properties
chriscoyier
162
24k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
180
A designer walks into a library…
pauljervisheath
210
24k
Transcript
REALAPS-omniを利用した全方位画 像による視環境評価技術について (株)ビジュアル・テクノロジー研究所 山本三七男
・VTL(ビジュアル・テクノロジー研究所)の紹介 ・自己紹介 ・技術の紹介 画像解析による視環境評価とは リアル・アピアランス画像の説明 グレアの推定について 明るさ知覚の推定について ・REALAPS-omni関連アプリの紹介 ・デモンストレーション Radianceシミュレーション結果の解析
RICOH THETA画像を用いた解析 目次
VTLの紹介 画像から「どう見えるか」を判断する 視環境設計・制御を提案する。 詳細はホームページを見てください。 http://vtl.co.jp/
自己紹介 社員はリモートで仕事をしています 私は実家のある和歌山県有田市 在住
画像解析による視環境評価とは
フォーカルとアンビエント フォーカル ビジョン 中心視を用いて,見ようとする対象を意図的に見ること アンビエント ビジョン 景色を見まわしたときに,様々なものが自然に目に 入ってきたり,視対象の周辺にあるものが自然に目に 入ってきたりするときの見え方
フォーカル視環境 としての評価 アンビエント視環境 としての評価 • 視対象サイズ • 視対象輝度(測光色) • 背景輝度(測光色)
ある部分の局所的な見え方 画像の絵としての見え方 • コントラストの画像分布(図) • 平均的な輝度・色度値 必要な評価 パラメータ 必要な評価 パラメータ 視環境を評価する側面
実空間の輝度分布
輝度(色度)画像を測定している Camera records a tristimulus color image.
輝度・色度計(luminous color meter) 色度も出力 色度:厳密な色情報 (x= 0.23 , y= 0.31)
外部環境が見える仕組み
リアル・アピアランス画像の説明
外部環境が見える仕組み
「外部環境からの光」と透明スクリーン 透明スクリーン
透明スクリーンからディスプレイへ ディスプレイ
正確な測光色画像(輝度・色度画像)が得られてい れば,その画像データから,明示的なアルゴリズム で生成された測光色画像をディスプレイに表示する ことで,実環境の視覚的体験を近似的に再現できる. リアル・アピアランス画像
統合コントラスト画像とリアルアピアランス画像 ・ ・ ・ ・ 対 数 輝 度 画
像 統 合 コ ン ト ラ ス ト 画 像 分解 コントラスト画像 コントラスト画像 コントラスト画像 細かい変化を抽出 粗い変化を抽出 細かい輝度変化 粗い輝度変化 近似画像 合成 ×係数 リ ア ル ・ ア ピ ア ラ ン ス 画 像 合成 +
リアル・アピアランス画像の変換パラメータの効果 写真の露出に対応 係数の効果
グレアの推定について
グレア評価はUGRのモデル式を利用 (PGSVなども同様に利用できる) UGR = 8*log10( 0.25/Lb * Ls^2 * ω
/ P^2) Ls:グレア源輝度、Lb:背景輝度、ω:光源サイズ(立体角)、P:ポジションインデックス P=1とし,グレア源を見た時のUGRを推定
UGRの評価スケール 28→ひどすぎる 22→不快 16→気になる 10→感じ始める
高輝度部分がオーバーフローしていないであることが必要
maxUGR=14.51 視角3deg(立体角約0.00215sr)のグレア源を検出すると,正 面の角から左二つ目の反射がグレア源と検出され,気にな るレベルであることが分かる
maxUGR=20.87 視角6deg(立体角約0.0085sr)のグレア源を検出すると,正 面の角から左二つ目の反射がグレア源と検出され,不快な レベルであることが分かる
不快なレベルのグレア光源
明るさ知覚の推定について
輝度画像から明るさ画像への変換 ・ ・ ・ ・ 輝 度 画 像 明
る さ 画 像 ウェーブ レット分解 輝度変化画像 輝度変化画像 輝度変化画像 細かい変化を抽出 粗い変化を抽出 細かい輝度変化 粗い輝度変化 ×係数 ×係数 ×係数 ウェーブ レット合成 近似画像 ×係数 実験より求めた 人の明るさに対 応した感度 ※全方位画像ではコントラストにかかる係数を 一定としている
20cd/ ㎡ 20cd/ ㎡ 20cd/ ㎡
輝度画像 (距離6mから3mのスクリーンを見る→28度) (28deg/910pixel=0.03 deg/pixel) 0.05 0.1 1 10 100 1000
10000 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600
対比の効果を入れる→明るさ画像 中央平均値 7.35 5.99 非常に明るい 明るい やや明るい どちらでもない やや暗い 暗い
とても暗い
None
全方位明るさ画像
明るさ検討画像から (空間全体の)明るさ感推定値を算出 ※立体角を反映した値となっている.
E(明るさ感推定値)=152.36 + 144 * R (B領域の面積-D領域の面積) (D領域の面積+N領域の面積+B領域の面積) R= ⚫ 4以下の値をもつ領域:
暗い色であると判断され,明るさ感には影響しない ⚫ 4~6.5の値をもつ領域: 薄暗く見え,明るさ感を低下させる(D:Dark領域) ⚫ 6.5~7.5の値をもつ領域: 明るくも暗くもなく見え,明るさ感に特に影響を与えない (N: Nutral領域) ⚫ 7.5~9の値をもつ領域: 明るく見え,明るさ感を向上させる(B: Bright領域) ⚫ 9以上の値をもつ領域: 光源と判断され,明るさ感には影響しない 明るさ感推定値はNB値の面積割合
REALAPS-omni関連アプリの紹介 • REALAPS-omni 全方位画像を用いた明るさ解析 • REALAPS-U-omni 全方位画像を用いた眼前照度及びグレア解析 • REALAPS-U-com 輝度画像の合成解析
シミュレーションデータの全方位画像合成
REALAPS-omniの紹介 全方位の輝度画像、明るさ画像、明るさ検討画像を用いた明るさ知覚推定ができます。
REALAPS-omniの紹介 RICOH THETA画像から測光色画像データの作製
REALAPS-U-omniの紹介 全方位輝度画像データを用いたて、全視野眼前照度、指定範囲の眼前照度の測定が できます。
REALAPS-U-omniの紹介 全方位画像を用いて、視線方向を切り替えた全視野眼前照度、指定範囲の眼前照度 の測定ができます。
REALAPS-U-omniの紹介 全方位画像から切り替えた視線方向に見える画像から、光源サイズ別のUGR代表値、 等価グレア源輝度、等価背景輝度を測定することができます。
REALAPS-U-comの紹介 光源の異なる輝度画像データを合成して、1つの輝度画像を作成することができます。 合成時に輝度値を変化させることにより、光源の影響を変えることができます。
REALAPS-U-comの紹介 Radianceが計算した‘angular fisheye distortion’のHDRデータを合成して、全方位画像 データを生成することができます。
REALAPS-U-comの紹介 Radianceが計算した‘angular fisheye distortion’のHDRデータを合成して、全方位画像 データを生成することができます。
デモを行います
ご清聴ありがとうございました