Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
コミュニティサービスにおける機械学習のためのアノテーション
Search
tatsushim
July 05, 2018
Research
0
2.2k
コミュニティサービスにおける機械学習のためのアノテーション
Annotation Meetup ~ 機械学習における教師データ作成をテーマに、アノテーションのノウハウを共有する勉強会 ~ の登壇資料
tatsushim
July 05, 2018
Tweet
Share
More Decks by tatsushim
See All by tatsushim
DockerとAmazon SageMakerで実現した機械学習システムのプロダクション移行
tatsushim
0
27k
日本のママをコンテナで支える
tatsushim
1
3.1k
コネヒトが考える技術選択の仕方について
tatsushim
0
22k
コネヒトが考えるサービスづくりに必要な技術とその考え方について
tatsushim
2
3.2k
word2vecで女性向けQ&Aサイトを解析してみた
tatsushim
0
6.3k
独身男性のためのデータドリブン講座
tatsushim
0
6.8k
Other Decks in Research
See All in Research
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
720
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
3.7k
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
150
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
310
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
320
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
200
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
180
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
140
投資戦略202508
pw
0
560
Generative Models 2025
takahashihiroshi
25
13k
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
120
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
170
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Navigating Team Friction
lara
189
15k
Context Engineering - Making Every Token Count
addyosmani
5
170
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Why Our Code Smells
bkeepers
PRO
339
57k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
Code Review Best Practice
trishagee
72
19k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
Designing for Performance
lara
610
69k
Transcript
$POOFIJUP*OD$50!UBUTVTIJN ϚϚͷҰาΛࢧ͑Δ ίϛϡχςΟαʔϏεʹ͓͚Δ ػցֶशͷͨΊͷΞϊςʔγϣϯ
ࣗݾհ
w ίωώτגࣜձࣾ ݱࡏظ w େֶӃ࣌ म࢜ ʹىۀ w
ڞಉۀऀऔక$50 w ઐػցֶश w ,%%*άϧʔϓʹ."͞ΕάϧʔϓೖΓ ౡాୡ࿕ !UBUTVTIJN
None
ਓͷੜ׆ʹͳͯ͘ͳΒͳ͍ͷΛͭ͘Δ
Ϣʔβʔͷߘʹྔߴ͑͘ΔϢʔβʔ͕ଟ͍ ఆྔ
Ϣʔβʔͷߘʹྔߴ͑͘ΔϢʔβʔ͕ଟ͍ ఆੑ ίϝϯτ͕ ͙͢ฦͬͯ͘Δ Ͱ ճ͕དྷΔ ಉ͡Έ ΛڞײͰ͖Δ
Ϣʔβʔͷߘʹྔߴ͑͘ΔϢʔβʔ͕ଟ͍ ఆੑ ίϝϯτ͕ ͙͢ฦͬͯ͘Δ Ͱ ճ͕དྷΔ ಉ͡Έ ΛڞײͰ͖Δ ࣮ϚϚϦͷ͜ͷΑ͏ͳ
ʮ͔͍͋ͨͨίϛϡχςΟʯ Λػցֶश͕ࢧ͍͑ͯ·͢
ػցֶशͷ׆༻ࣄྫʹ͍ͭͯจΛॻ͖·ͨ͠ IUUQTXXXXBOUFEMZDPNDPNQBOJFTDPOOFIJUPQPTU@BSUJDMFT
$POOFIJUP*OD$50!UBUTVTIJN ϚϚͷҰาΛࢧ͑Δ ίϛϡχςΟαʔϏεʹ͓͚Δ ػցֶशͷͨΊͷΞϊςʔγϣϯ
$POOFIJUP*OD$50!UBUTVTIJN ϚϚͷҰาΛࢧ͑Δ ίϛϡχςΟαʔϏεʹ͓͚Δ ػցֶशͷͨΊͷΞϊςʔγϣϯ
ϚϚϦͷΑ͏ͳίϛϡχςΟͷதͰ2"Λߦ͏αʔϏεͷ֓ཁਤ
ػցֶशͷಋೖχʔζͷ࣮ྫ
• ίϛϡχςΟʹ͓͍࣭ͯʹରͯ͠ճ͕༩͑ ΒΕ͍ͯΔ͜ͱ͕ͱͯେࣄ • ະճΛԿʹԼ͛Δ͜ͱ͕Ͱ͖Δ͔, ͕ϙΠϯ τ • ߘޙ,
ະճʹͳͬͨ··ͷ࣭ΛRˍDͷதͰ ੳͯ͠Έͨ త
lർΕͯΠϥΠϥΛਓʹͿ͚ͭͯ͠·͍·͢खΛ͋͛ͨ Γ͠ͳ͍͚Ͳɼ͍ͭΠϥΠϥౖͯ͠໐ͬͯ͠·͏ ͜Μͳࣗʹݏؾ͕͞͠·͢ਖ਼ਏ͍z
lർΕͯΠϥΠϥΛਓʹͿ͚ͭͯ͠·͍·͢खΛ͋͛ͨ Γ͠ͳ͍͚Ͳɼ͍ͭΠϥΠϥౖͯ͠໐ͬͯ͠·͏ ͜Μͳࣗʹݏؾ͕͞͠·͢ਖ਼ਏ͍z ੳΛͯ͠ΈΔͱ ͜ͷΑ͏ͳߘ ճΛ༩͑ΒΕʹ͍͘͜ͱ͕Θ͔ͬͨ
lർΕͯΠϥΠϥΛਓʹͿ͚ͭͯ͠·͍·͢खΛ͋͛ͨ Γ͠ͳ͍͚Ͳɼ͍ͭΠϥΠϥౖͯ͠໐ͬͯ͠·͏ ͜Μͳࣗʹݏؾ͕͞͠·͢ਖ਼ਏ͍z ײͷڞײΛٻΊΔ͜ͷΑ͏ͳߘ ΛʮڞײΛٻΊΔ࣭ʯͱఆٛ͢Δ
՝ͷղܾํ๏
՝ͷղܾํ๏
՝ͷղܾํ๏ ࣭ͷߴ͍ڭࢣσʔλ͕ඞཁ
ίϛϡχςΟαʔϏε ʹ͓͚ΔΞϊςʔγϣϯͷ՝
Ξϊςʔγϣϯͷ֎͕͍͠
• ίϛϡχςΟͰʑΓͱΓ͞ΕΔಠಛͷݴ͍ճ͠ දݱ, ίϯςΩετͷཧղ͕ඞཁ • Ex. 8w5d = ৷ܦաظ͕ؒ8िؒͱ5
• ͭ·Γ, Amazon Mechanical TurkͳͲͷΫϥυιʔ γϯάαʔϏεͷར༻͕Ͱ͖ͳ͍ • ίϛϡχςΟΛৗۀͰݟ͍ͯΔ ίϛϡχςΟϚωʔδϟʔͰͳ͍ͱਖ਼͍͠அ ͍͠ Ξϊςʔγϣϯͷ֎͕͍͠
• ຖίϛϡχςΟΛݟͯ, ͦͷίϛϡχςΟͰ ʹڍ͕ͬͨ͜ͱงғؾΛ؍͠, αʔϏε ͷվળɾاըFB͢Δׂ • ϢʔβʔΠϯλϏϡʔͷ૭ޱΧελϚʔαϙʔ τରԠ݉
• ϚϚϦͷʮ͔͍͋ͨͨίϛϡχςΟʯΛҡ࣋͠ վળ͍ͯͨ͘͠Ίʹ͔ܽͤͳ͍ଘࡏ ίϛϡχςΟϚωʔδϟʔͷׂ
΄Μͱ୴ಹ͕Ոࣄ͠ͳͯ͘ϜΧͭ͘ྉཧຖͯ͠Δͷ ʹΰϛࣺͯҰͭ͠ͳ͍ͬͯͲʔΏ͏͜ͱͳΜ օ͞Μͦ ͏ࢥ͍·ͤΜ
΄Μͱ୴ಹ͕Ոࣄ͠ͳͯ͘ϜΧͭ͘ྉཧຖͯ͠Δͷ ʹΰϛࣺͯҰͭ͠ͳ͍ͬͯͲʔΏ͏͜ͱͳΜ օ͞Μͦ ͏ࢥ͍·ͤΜ ͜ΕڞײΛٻΊΔ࣭ʁ ͦΕͱڞײҎ֎ΛٻΊΔ࣭ʁ
΄Μͱ୴ಹ͕Ոࣄ͠ͳͯ͘ϜΧͭ͘ྉཧຖͯ͠Δͷ ʹΰϛࣺͯҰͭ͠ͳ͍ͬͯͲʔΏ͏͜ͱͳΜ օ͞Μͦ ͏ࢥ͍·ͤΜ ݟΛ࣋ͬͯదͳஅΛͯ͘͠ΕΔͷ͕ ίϛϡχςΟϚωʔδϟʔ
ֶशثͷਫ਼্ͷͨΊʹ ίϛϡχςΟϚωʔδϟʔ ͱͷ࿈ܞ͕ෆՄܽ
ҰํͰ ਓͷஅʹΑΔ՝
• ϥϕϧ͚ݶΒΕͨਓͷίϛϡχςΟϚωʔ δϟʔʹΑͬͯߦΘΕΔ • ਓͳͷͰͲ͏ͯͦ͠ͷਓͷओ؍͕ೖΔ • ΞϊςʔγϣϯσʔλͷҰ؏ੑͷ୲อ͕͍͠ அ͕ओ؍త
Ͳ͏ͬͯΞϊςʔγϣϯ͢Δʁ
• ෳਓͷఆ݁ՌΛ༻͍Δ • ଟஈ(ϚϚϦͰ4ஈ֊)ͷϥϕϧ • kappaΛ༻͍ͯྨͷҰகݟΔ Ұ؏ੑΛ୲อ͢ΔͨΊͷऔΓΈ
• ෳਓͷఆ݁ՌΛ༻͍Δ • ଟஈ(ϚϚϦͰ4ஈ֊)ͷϥϕϧ • kappaΛ༻͍ͯྨͷҰகݟΔ Ұ؏ੑΛ୲อ͢ΔͨΊͷऔΓΈ
• Definitely Yes(DY)ఆऀ͕ࣗ৴Λ࣋ͬͯஅ͠ ͨࡍʹ༻͍ΒΕΔ • Probably Yes(PY) DY ΑΓࣗ৴͕ͳ͍͕YesͰ
͋Ζ͏ͱஅͨ͠ࡍʹ༻͍ΒΕΔ ஈ֊ͷϥϕϧ
• දதͷ Y ڞײΛٻΊΔ࣭ͱͯ͠ྨ͠ɼN ڞײҎ֎ΛٻΊΔ࣭ͱྨ • ఆ݁Ռ͕Ұக͠ͳ͍, Dͱͳ͍ͬͯΔ෦ʹؔͯ͠
ϥϕϧෆՄೳͱஅ͠ɼσʔληοτ͔Βআ͘ ஈ֊ͷϥϕϧ
• ෳਓͷఆ݁ՌΛ༻͍Δ • ଟஈ(ϚϚϦͰ4ஈ֊)ͷϥϕϧ • kappaΛ༻͍ͯྨͷҰகݟΔ Ұ؏ੑΛ୲อ͢ΔͨΊͷऔΓΈ
LBQQB
ͬͨ͜ͱ͋ΔΑͱ͍͏ํ
kappaͷఆٛ SFG+3-BOEJTBOE((,PDI5IF.FBTVSFNFOUPG0CTFSWFS"HSFFNFOUGPS$BUFHPSJDBM%BUB #JPNFUSJDT 7PM /P QQ
kappaͷఆٛ SFG+3-BOEJTBOE((,PDI5IF.FBTVSFNFOUPG0CTFSWFS"HSFFNFOUGPS$BUFHPSJDBM%BUB #JPNFUSJDT 7PM /P QQ
kappaͷఆٛ SFG+3-BOEJTBOE((,PDI5IF.FBTVSFNFOUPG0CTFSWFS"HSFFNFOUGPS$BUFHPSJDBM%BUB #JPNFUSJDT 7PM /P QQ
• ೋਓͷఆऀʹΑΔྨͷҰகΛݟΔ • 1ʹ͍ۙ΄ͲҰக͕ߴ͍ • 0.8ΑΓେ͖͚ΕҰக΄ͱΜͲҰக͍ͯ͠Δ ͱݟͳͤΔ kappaͷҙຯ SFG-BOEJT+3
,PDI((5IFNFBTVSFNFOUPGPCTFSWFSBHSFFNFOUGPSDBUFHPSJDBMEBUB#JPNFUSJDT ɹ
࣭ͷߴ͍Ξϊςʔγϣϯσʔλ ͷ࡞ʹऔΓΜͰ͍·͢
͜Ε·Ͱ ͱ͜Ε͔Β
શࠃʹ57$.Λ์ө
• CMͷ݁Ռ, τϥϑΟοΫ2ഒʹ • ϚϚ͚No.1ͱͳΓߦͱͷऔΓΈࣾ ձͷൃ৴ߦ͍ͬͯΔ • ࣾձͷΠϯϑϥʹ͖ۙͮͭͭ͋ΔதͰ αʔϏεͷίΞςΫϊϩδʔͰ͋Δ
ػցֶशͷΠϯύΫτେ͖͘ͳΔ ػցֶशͷΠϯύΫτ͕େ͖͘ͳΔ
• ઌఔͷྫͷΑ͏ͳྨλεΫݚڀͱͯ͠ લྫ͕গͳ͘, ͞ΒʹػցֶशʹΑΔࣄۀ ΠϯύΫτΛΕΔ͜ͱͱͯΓ͕͍ ͕͋Δ • ඇ࿈ଓͳΛΔνϟϯε͕͋Δ •
ٕज़ͷྗͰ, ࠓΑΓ͏Ұஈ֊্ͷίϛϡ χςΟΛ͍͖ͬͯ·͢ ඇ࿈ଓͳΛػցֶशͰΔ
·ͱΊ
• ϚϚ͚No.1ΞϓϦͷϚϚϦ͕࣋ͭ ʮ͔͋ͨͨΈͷ͋ΔίϛϡχςΟʯ ػցֶशʹΑ࣮ͬͯݱ͞Ε͍ͯΔ • ఆ͕͍͠Ξϊςʔγϣϯʹ͍ͭͯίϛϡ χςΟϚωʔδϟʔͱ࿈ܞΛ͠ͳ͕Β, ਖ਼͍͠ Ξϊςʔγϣϯ͕Ͱ͖͍ͯΔ͔Λ౷ܭతʹ֬ೝ
͍ͯ͠Δ • ͜Ε͔Βඇ࿈ଓͳΛٕज़Ͱ͍ͬͯ͘ ·ͱΊ
͏ͪΐͬͱΛฉ͍ͯΈ͍ͨͱ ࢥͬͨํؾܰʹ͓͕͚͍ͩ͘͞ ͘͠!UBUTVTIJNʹ%.Ͱ
$POOFIJUP*OD$50!UBUTVTIJN ϚϚͷҰาΛࢧ͑Δ ͝ਗ਼ௌ༗͏͍͟͝·ͨ͠%