Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
コミュニティサービスにおける機械学習のためのアノテーション
Search
tatsushim
July 05, 2018
Research
0
2.2k
コミュニティサービスにおける機械学習のためのアノテーション
Annotation Meetup ~ 機械学習における教師データ作成をテーマに、アノテーションのノウハウを共有する勉強会 ~ の登壇資料
tatsushim
July 05, 2018
Tweet
Share
More Decks by tatsushim
See All by tatsushim
DockerとAmazon SageMakerで実現した機械学習システムのプロダクション移行
tatsushim
0
27k
日本のママをコンテナで支える
tatsushim
1
3.1k
コネヒトが考える技術選択の仕方について
tatsushim
0
22k
コネヒトが考えるサービスづくりに必要な技術とその考え方について
tatsushim
2
3.2k
word2vecで女性向けQ&Aサイトを解析してみた
tatsushim
0
6.3k
独身男性のためのデータドリブン講座
tatsushim
0
6.9k
Other Decks in Research
See All in Research
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
800
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
230
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
530
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
560
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
180
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
940
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
440
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
450
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
110
POI: Proof of Identity
katsyoshi
0
120
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
300
Featured
See All Featured
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
From π to Pie charts
rasagy
0
100
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
2.8k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
120
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
140
Marketing to machines
jonoalderson
1
4.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Between Models and Reality
mayunak
1
160
Transcript
$POOFIJUP*OD$50!UBUTVTIJN ϚϚͷҰาΛࢧ͑Δ ίϛϡχςΟαʔϏεʹ͓͚Δ ػցֶशͷͨΊͷΞϊςʔγϣϯ
ࣗݾհ
w ίωώτגࣜձࣾ ݱࡏظ w େֶӃ࣌ म࢜ ʹىۀ w
ڞಉۀऀऔక$50 w ઐػցֶश w ,%%*άϧʔϓʹ."͞ΕάϧʔϓೖΓ ౡాୡ࿕ !UBUTVTIJN
None
ਓͷੜ׆ʹͳͯ͘ͳΒͳ͍ͷΛͭ͘Δ
Ϣʔβʔͷߘʹྔߴ͑͘ΔϢʔβʔ͕ଟ͍ ఆྔ
Ϣʔβʔͷߘʹྔߴ͑͘ΔϢʔβʔ͕ଟ͍ ఆੑ ίϝϯτ͕ ͙͢ฦͬͯ͘Δ Ͱ ճ͕དྷΔ ಉ͡Έ ΛڞײͰ͖Δ
Ϣʔβʔͷߘʹྔߴ͑͘ΔϢʔβʔ͕ଟ͍ ఆੑ ίϝϯτ͕ ͙͢ฦͬͯ͘Δ Ͱ ճ͕དྷΔ ಉ͡Έ ΛڞײͰ͖Δ ࣮ϚϚϦͷ͜ͷΑ͏ͳ
ʮ͔͍͋ͨͨίϛϡχςΟʯ Λػցֶश͕ࢧ͍͑ͯ·͢
ػցֶशͷ׆༻ࣄྫʹ͍ͭͯจΛॻ͖·ͨ͠ IUUQTXXXXBOUFEMZDPNDPNQBOJFTDPOOFIJUPQPTU@BSUJDMFT
$POOFIJUP*OD$50!UBUTVTIJN ϚϚͷҰาΛࢧ͑Δ ίϛϡχςΟαʔϏεʹ͓͚Δ ػցֶशͷͨΊͷΞϊςʔγϣϯ
$POOFIJUP*OD$50!UBUTVTIJN ϚϚͷҰาΛࢧ͑Δ ίϛϡχςΟαʔϏεʹ͓͚Δ ػցֶशͷͨΊͷΞϊςʔγϣϯ
ϚϚϦͷΑ͏ͳίϛϡχςΟͷதͰ2"Λߦ͏αʔϏεͷ֓ཁਤ
ػցֶशͷಋೖχʔζͷ࣮ྫ
• ίϛϡχςΟʹ͓͍࣭ͯʹରͯ͠ճ͕༩͑ ΒΕ͍ͯΔ͜ͱ͕ͱͯେࣄ • ະճΛԿʹԼ͛Δ͜ͱ͕Ͱ͖Δ͔, ͕ϙΠϯ τ • ߘޙ,
ະճʹͳͬͨ··ͷ࣭ΛRˍDͷதͰ ੳͯ͠Έͨ త
lർΕͯΠϥΠϥΛਓʹͿ͚ͭͯ͠·͍·͢खΛ͋͛ͨ Γ͠ͳ͍͚Ͳɼ͍ͭΠϥΠϥౖͯ͠໐ͬͯ͠·͏ ͜Μͳࣗʹݏؾ͕͞͠·͢ਖ਼ਏ͍z
lർΕͯΠϥΠϥΛਓʹͿ͚ͭͯ͠·͍·͢खΛ͋͛ͨ Γ͠ͳ͍͚Ͳɼ͍ͭΠϥΠϥౖͯ͠໐ͬͯ͠·͏ ͜Μͳࣗʹݏؾ͕͞͠·͢ਖ਼ਏ͍z ੳΛͯ͠ΈΔͱ ͜ͷΑ͏ͳߘ ճΛ༩͑ΒΕʹ͍͘͜ͱ͕Θ͔ͬͨ
lർΕͯΠϥΠϥΛਓʹͿ͚ͭͯ͠·͍·͢खΛ͋͛ͨ Γ͠ͳ͍͚Ͳɼ͍ͭΠϥΠϥౖͯ͠໐ͬͯ͠·͏ ͜Μͳࣗʹݏؾ͕͞͠·͢ਖ਼ਏ͍z ײͷڞײΛٻΊΔ͜ͷΑ͏ͳߘ ΛʮڞײΛٻΊΔ࣭ʯͱఆٛ͢Δ
՝ͷղܾํ๏
՝ͷղܾํ๏
՝ͷղܾํ๏ ࣭ͷߴ͍ڭࢣσʔλ͕ඞཁ
ίϛϡχςΟαʔϏε ʹ͓͚ΔΞϊςʔγϣϯͷ՝
Ξϊςʔγϣϯͷ֎͕͍͠
• ίϛϡχςΟͰʑΓͱΓ͞ΕΔಠಛͷݴ͍ճ͠ දݱ, ίϯςΩετͷཧղ͕ඞཁ • Ex. 8w5d = ৷ܦաظ͕ؒ8िؒͱ5
• ͭ·Γ, Amazon Mechanical TurkͳͲͷΫϥυιʔ γϯάαʔϏεͷར༻͕Ͱ͖ͳ͍ • ίϛϡχςΟΛৗۀͰݟ͍ͯΔ ίϛϡχςΟϚωʔδϟʔͰͳ͍ͱਖ਼͍͠அ ͍͠ Ξϊςʔγϣϯͷ֎͕͍͠
• ຖίϛϡχςΟΛݟͯ, ͦͷίϛϡχςΟͰ ʹڍ͕ͬͨ͜ͱงғؾΛ؍͠, αʔϏε ͷվળɾاըFB͢Δׂ • ϢʔβʔΠϯλϏϡʔͷ૭ޱΧελϚʔαϙʔ τରԠ݉
• ϚϚϦͷʮ͔͍͋ͨͨίϛϡχςΟʯΛҡ࣋͠ վળ͍ͯͨ͘͠Ίʹ͔ܽͤͳ͍ଘࡏ ίϛϡχςΟϚωʔδϟʔͷׂ
΄Μͱ୴ಹ͕Ոࣄ͠ͳͯ͘ϜΧͭ͘ྉཧຖͯ͠Δͷ ʹΰϛࣺͯҰͭ͠ͳ͍ͬͯͲʔΏ͏͜ͱͳΜ օ͞Μͦ ͏ࢥ͍·ͤΜ
΄Μͱ୴ಹ͕Ոࣄ͠ͳͯ͘ϜΧͭ͘ྉཧຖͯ͠Δͷ ʹΰϛࣺͯҰͭ͠ͳ͍ͬͯͲʔΏ͏͜ͱͳΜ օ͞Μͦ ͏ࢥ͍·ͤΜ ͜ΕڞײΛٻΊΔ࣭ʁ ͦΕͱڞײҎ֎ΛٻΊΔ࣭ʁ
΄Μͱ୴ಹ͕Ոࣄ͠ͳͯ͘ϜΧͭ͘ྉཧຖͯ͠Δͷ ʹΰϛࣺͯҰͭ͠ͳ͍ͬͯͲʔΏ͏͜ͱͳΜ օ͞Μͦ ͏ࢥ͍·ͤΜ ݟΛ࣋ͬͯదͳஅΛͯ͘͠ΕΔͷ͕ ίϛϡχςΟϚωʔδϟʔ
ֶशثͷਫ਼্ͷͨΊʹ ίϛϡχςΟϚωʔδϟʔ ͱͷ࿈ܞ͕ෆՄܽ
ҰํͰ ਓͷஅʹΑΔ՝
• ϥϕϧ͚ݶΒΕͨਓͷίϛϡχςΟϚωʔ δϟʔʹΑͬͯߦΘΕΔ • ਓͳͷͰͲ͏ͯͦ͠ͷਓͷओ؍͕ೖΔ • ΞϊςʔγϣϯσʔλͷҰ؏ੑͷ୲อ͕͍͠ அ͕ओ؍త
Ͳ͏ͬͯΞϊςʔγϣϯ͢Δʁ
• ෳਓͷఆ݁ՌΛ༻͍Δ • ଟஈ(ϚϚϦͰ4ஈ֊)ͷϥϕϧ • kappaΛ༻͍ͯྨͷҰகݟΔ Ұ؏ੑΛ୲อ͢ΔͨΊͷऔΓΈ
• ෳਓͷఆ݁ՌΛ༻͍Δ • ଟஈ(ϚϚϦͰ4ஈ֊)ͷϥϕϧ • kappaΛ༻͍ͯྨͷҰகݟΔ Ұ؏ੑΛ୲อ͢ΔͨΊͷऔΓΈ
• Definitely Yes(DY)ఆऀ͕ࣗ৴Λ࣋ͬͯஅ͠ ͨࡍʹ༻͍ΒΕΔ • Probably Yes(PY) DY ΑΓࣗ৴͕ͳ͍͕YesͰ
͋Ζ͏ͱஅͨ͠ࡍʹ༻͍ΒΕΔ ஈ֊ͷϥϕϧ
• දதͷ Y ڞײΛٻΊΔ࣭ͱͯ͠ྨ͠ɼN ڞײҎ֎ΛٻΊΔ࣭ͱྨ • ఆ݁Ռ͕Ұக͠ͳ͍, Dͱͳ͍ͬͯΔ෦ʹؔͯ͠
ϥϕϧෆՄೳͱஅ͠ɼσʔληοτ͔Βআ͘ ஈ֊ͷϥϕϧ
• ෳਓͷఆ݁ՌΛ༻͍Δ • ଟஈ(ϚϚϦͰ4ஈ֊)ͷϥϕϧ • kappaΛ༻͍ͯྨͷҰகݟΔ Ұ؏ੑΛ୲อ͢ΔͨΊͷऔΓΈ
LBQQB
ͬͨ͜ͱ͋ΔΑͱ͍͏ํ
kappaͷఆٛ SFG+3-BOEJTBOE((,PDI5IF.FBTVSFNFOUPG0CTFSWFS"HSFFNFOUGPS$BUFHPSJDBM%BUB #JPNFUSJDT 7PM /P QQ
kappaͷఆٛ SFG+3-BOEJTBOE((,PDI5IF.FBTVSFNFOUPG0CTFSWFS"HSFFNFOUGPS$BUFHPSJDBM%BUB #JPNFUSJDT 7PM /P QQ
kappaͷఆٛ SFG+3-BOEJTBOE((,PDI5IF.FBTVSFNFOUPG0CTFSWFS"HSFFNFOUGPS$BUFHPSJDBM%BUB #JPNFUSJDT 7PM /P QQ
• ೋਓͷఆऀʹΑΔྨͷҰகΛݟΔ • 1ʹ͍ۙ΄ͲҰக͕ߴ͍ • 0.8ΑΓେ͖͚ΕҰக΄ͱΜͲҰக͍ͯ͠Δ ͱݟͳͤΔ kappaͷҙຯ SFG-BOEJT+3
,PDI((5IFNFBTVSFNFOUPGPCTFSWFSBHSFFNFOUGPSDBUFHPSJDBMEBUB#JPNFUSJDT ɹ
࣭ͷߴ͍Ξϊςʔγϣϯσʔλ ͷ࡞ʹऔΓΜͰ͍·͢
͜Ε·Ͱ ͱ͜Ε͔Β
શࠃʹ57$.Λ์ө
• CMͷ݁Ռ, τϥϑΟοΫ2ഒʹ • ϚϚ͚No.1ͱͳΓߦͱͷऔΓΈࣾ ձͷൃ৴ߦ͍ͬͯΔ • ࣾձͷΠϯϑϥʹ͖ۙͮͭͭ͋ΔதͰ αʔϏεͷίΞςΫϊϩδʔͰ͋Δ
ػցֶशͷΠϯύΫτେ͖͘ͳΔ ػցֶशͷΠϯύΫτ͕େ͖͘ͳΔ
• ઌఔͷྫͷΑ͏ͳྨλεΫݚڀͱͯ͠ લྫ͕গͳ͘, ͞ΒʹػցֶशʹΑΔࣄۀ ΠϯύΫτΛΕΔ͜ͱͱͯΓ͕͍ ͕͋Δ • ඇ࿈ଓͳΛΔνϟϯε͕͋Δ •
ٕज़ͷྗͰ, ࠓΑΓ͏Ұஈ֊্ͷίϛϡ χςΟΛ͍͖ͬͯ·͢ ඇ࿈ଓͳΛػցֶशͰΔ
·ͱΊ
• ϚϚ͚No.1ΞϓϦͷϚϚϦ͕࣋ͭ ʮ͔͋ͨͨΈͷ͋ΔίϛϡχςΟʯ ػցֶशʹΑ࣮ͬͯݱ͞Ε͍ͯΔ • ఆ͕͍͠Ξϊςʔγϣϯʹ͍ͭͯίϛϡ χςΟϚωʔδϟʔͱ࿈ܞΛ͠ͳ͕Β, ਖ਼͍͠ Ξϊςʔγϣϯ͕Ͱ͖͍ͯΔ͔Λ౷ܭతʹ֬ೝ
͍ͯ͠Δ • ͜Ε͔Βඇ࿈ଓͳΛٕज़Ͱ͍ͬͯ͘ ·ͱΊ
͏ͪΐͬͱΛฉ͍ͯΈ͍ͨͱ ࢥͬͨํؾܰʹ͓͕͚͍ͩ͘͞ ͘͠!UBUTVTIJNʹ%.Ͱ
$POOFIJUP*OD$50!UBUTVTIJN ϚϚͷҰาΛࢧ͑Δ ͝ਗ਼ௌ༗͏͍͟͝·ͨ͠%