Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
dbt_Cloudとdbt_Core併用の試み
Search
Toshiki Tsuchikawa
August 22, 2023
Programming
3
1.6k
dbt_Cloudとdbt_Core併用の試み
https://findy.connpass.com/event/291767/
でのLTになります。
Toshiki Tsuchikawa
August 22, 2023
Tweet
Share
More Decks by Toshiki Tsuchikawa
See All by Toshiki Tsuchikawa
タイミーのデータモデリング事例と今後のチャレンジ
ttccddtoki
8
3.9k
タイミーのデータ活用を支えるdbt Cloud導入とこれから
ttccddtoki
2
1.3k
タイミーにおけるデータ活用の未来
ttccddtoki
0
340
急成長する組織を支えるデータ基盤のこれまで、これから
ttccddtoki
6
860
アジリティの高いデータ基盤を目指して
ttccddtoki
4
1.8k
DMBOKを参考にしたデータマネジメントの取り組み
ttccddtoki
6
3.1k
データ品質を重視したデータ基盤プロダクト開発
ttccddtoki
8
2.5k
タイミーの未来を支えるデータ基盤プロダクト
ttccddtoki
1
1k
datatech-jp Casual Talks #3
ttccddtoki
0
1.2k
Other Decks in Programming
See All in Programming
gunshi
kazupon
1
120
クラウドに依存しないS3を使った開発術
simesaba80
0
160
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
190
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3.3k
Cap'n Webについて
yusukebe
0
150
GISエンジニアから見たLINKSデータ
nokonoko1203
0
180
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.3k
SwiftUIで本格音ゲー実装してみた
hypebeans
0
500
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
150
Implementation Patterns
denyspoltorak
0
120
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.3k
AIエージェントの設計で注意するべきポイント6選
har1101
5
2.3k
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Tell your own story through comics
letsgokoyo
0
760
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
63
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
850
Ethics towards AI in product and experience design
skipperchong
1
140
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
78
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
99
Evolving SEO for Evolving Search Engines
ryanjones
0
73
How to train your dragon (web standard)
notwaldorf
97
6.4k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
45
Transcript
2023/08/22 土川稔生 dbt Cloudとdbt Core併用の試み @tvtg_24 データ基盤管理の考え方 〜dbtの極意〜 Lunch LT
データ基盤や開発チームの規模 によるdbt構成の事例
土川 稔生 (Tsuchikawa Toshiki) • 株式会社タイミーに2020年入社 • DRE (Data Reliability
Engineering) チーム ◦ データエンジニアとしてデータ基盤プロダク トを構築 ◦ 現在はプロダクトオーナーとして、データ基 盤プロダクト作りに励む 3 自己紹介
目次 • dbtの導入経緯 • dbt Cloudとdbt Coreの併用
1 dbtの導入経緯
現在のデータ基盤概要
7 🔥 ETLのT処理のツール依存性、肥大化、不透明性 - データ量の増加に伴いマスキングなどの加工処理を 行っているembulk内のT処理コードの実行時間が肥大 化してきた - troccoなどのembulk以外のデータパイプラインの導入 があるが、T処理がembulkに依存している
- embulkのコードを読まないと T処理の内容が把握でき ず、分析者からすると不透明な処理である 💡 dbt Cloudの導入によって期待すること - dbt Cloudを用いてembulkで行っていたT処理を代替 - データパイプラインに用いているツールに依存せずに、 BigQueryに収集したデータに対して様々な加工が可能 になる - SQL記述ができることによる DWH, DM開発メンバーの 増加 マスキングを含めた加工処理 ❌ dbtの導入理由
8 dbt Cloudの選定理由 要件 • DAG構成で記述できる • スケジューラ機能がある • 事例が豊富である
• メンテ・導入コストが少ない • 費用面での制約... など 比較したサービス • Panoply • cloud dataflow • data fusion • Dataform • dbt Cloud 選定日時: 2021年9月 データ基盤チーム: 2人
9 dbt Cloudの選定理由 → 費用より事例の豊富さの方が要件として優先度が高いので、dbt Cloudに選定
2 dbt Cloudとdbt Coreの併用
dbt Cloudを導入して...! 導入前期待していたことはほとんど達成できた • 加工処理をembulkから剥がすことで、スケーラブルなパイプラインを構築できた • dbtのパッケージによりテストや品質チェックも楽になった • インフラ準備する必要がないため、少人数チームでも問題なく運用ができた •
加工処理が見やすく、開発効率が上がった • 加工処理を開発できるメンバーが増えた (DWH, DM開発)
新しく出てきた課題 • 他チームがみて加工処理がわかるほど単純ではなかった • JobやEnvironmentはdbt Cloudではコード管理できなかった • 開発チームが増えるにつれ、 dbt Cloudの金額コストが上がってきた
• dbt Cloudのインフラサイズだとメモリや CPUの強度が足りなくなってきた • dbt Cloud以外のエディタで他のコマンドを用いながら開発したいという声がある 日時: 現在 dbtの開発人数: 約10人
dbt Core併用の試み dbt Cloud • 対象ユーザー SQLを武器とする分析者 • 利用用途 DWH,
DMのモデリングが中心 • 利用しない用途 Env、Jobの定義、スケジューラー dbt Core • 対象ユーザー 誰でも • 利用用途 dbt Cloudが担当しないJobなどのコード管理 含めて、全て 期待すること • Jobなどのコード管理による開発における信頼性の向上 • dbtを開発できる人数やチームの増加 など
まとめ これまで...! • dbt Cloudを導入することで、ETL構成をELT構成に変更することができた • それに加え、開発に参加する人も増え、 DWH, DM開発もスケールするようになった •
一方でdbt Cloudだけの運用では特に品質面で問題が起こるようになり dbt Coreも併用して使お うとしている これから...! • dbt Cloudとdbt Coreを併用していくことで、開発の参加者をさらにスケールさせつつ、開発効率、 データ品質の向上を目指す
まだまだ道半ばなのでお力を貸してください!!! https://hrmos.co/pages/timee/jobs/1682251404118319115 積極的に採用中です!!!