Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ICML2013読み会 "ELLA: An Efficient Lifelong Learni...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yuya Unno
July 09, 2013
Research
0
18
ICML2013読み会 "ELLA: An Efficient Lifelong Learning Algorithm"
Yuya Unno
July 09, 2013
Tweet
Share
More Decks by Yuya Unno
See All by Yuya Unno
深層学習で切り拓くパーソナルロボットの未来 @東京大学 先端技術セミナー 工学最前線
unnonouno
0
22
深層学習時代の自然言語処理ビジネス @DLLAB 言語・音声ナイト
unnonouno
0
44
ベンチャー企業で言葉を扱うロボットの研究開発をする @東京大学 電子情報学特論I
unnonouno
0
45
PFNにおけるセミナー活動 @NLP2018 言語処理研究者・技術者の育成と未来への連携WS
unnonouno
0
14
進化するChainer @JSAI2017
unnonouno
0
19
予測型戦略を知るための機械学習チュートリアル @BigData Conference 2017 Spring
unnonouno
0
20
深層学習フレームワーク Chainerとその進化
unnonouno
0
19
深層学習による機械とのコミュニケーション @DeNA TechCon 2017
unnonouno
0
28
最先端NLP勉強会 “Learning Language Games through Interaction” @第8回最先端NLP勉強会
unnonouno
0
15
Other Decks in Research
See All in Research
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
660
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
380
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
160
POI: Proof of Identity
katsyoshi
0
140
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
480
2025-11-21-DA-10th-satellite
yegusa
0
110
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
170
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Paper Plane (Part 1)
katiecoart
PRO
0
4.3k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Documentation Writing (for coders)
carmenintech
77
5.3k
First, design no harm
axbom
PRO
2
1.1k
How GitHub (no longer) Works
holman
316
140k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
The untapped power of vector embeddings
frankvandijk
1
1.6k
Transcript
ELLA: An Efficient Lifelong Learning Algorithm 株式会社Preferred Infrastructure 海野 裕也
(@unnonouno) 2013/07/09 ICML2013読み会@東大
⾃自⼰己紹介 l 海野 裕也 (@unnonouno) l プリファードインフラストラクチャー l 情報検索索、レコメンド l 機械学習・データ解析研究開発
l Jubatusチームリーダー l 分散オンライン機械学習フレームワーク l 専⾨門 l ⾃自然⾔言語処理理 l テキストマイニング 2
要旨 l Lifelong learningのためにGO-MTLの精度度をほとんど落落 とさずに、1000倍早くした l ⼿手法の要旨は以下の2点 l テーラー展開して元の最適化の式を簡略略化 l
再計算の必要な項の計算を簡略略化 3
Lifelong learning 4
Lifelong learning l タスクが次々やってくる l Z(1), …, Z(Tmax) l 学習者はタスクの数も順番も知らない
l 各Zは教師有りの問題(分類か回帰) l 各タスクにはn t 個の教師ありデータが与えられる マルチタスクで、タスクが次々やってくるイメージ 5
Lifelong learningのキモチ(ホントか?) l ずっと学習し続ける l データセットはオンラインでやってくる l 過去の学習結果をうまく活かしたい(似たような問題、 組み合わせの問題が多い) 例例えば将来的に、ずっと学習し続けるインフラのようなモ
ノができた時を想定している(のかも) 6
Grouping and Overlap in Multi-Task Learning (GO-MTL) [Kumar&Daume III ’12]
l L: 損失関数 l w = Ls: モデルパラメータ l L: k個の隠れタスクの重み l s: 各タスクをLの線形和で表現する役割 l sは疎にしたいのでL1正則化 7 収束の証明のために ちょっと変えてある
GO-MTLが遅い l GO-MTL⾃自体はマルチタスクのバッチ学習⼿手法なので データが次々やってくるLifelong learningに適⽤用しよう とすると遅い l 2重ループが明らかに遅そう 8
⼯工夫1: 損失関数の部分をテーラー展開 9 θ(t)の周りで2次の テーラー展開
⼯工夫2: 全てのtに対するs(t)の最適化を⾏行行うのは⾮非効 率率率 10 s(t)の最適化を 順次行う
実際の更更新式 l L = A-1b l 実際に計算するときは、Aとbは差分更更新できるような⼯工 夫が⼊入っている 11
実験結果 12 バッチとほとんど同じ精度度で1000倍以上速い!!
あれ、よく⾒見見ると・・・ 13 Single Task Leaning (STL) でもそこそこだし、 当然もっと速い・・・
まとめ l マルチタスクのバッチ学習であるGO-MTLをLifelong learningに適⽤用するために、⾮非効率率率な部分を効率率率化した l ほとんど精度度を下げずに、1000倍以上⾼高速化した l タスクを独⽴立立に解いてもそこそこの精度度が出ていて、実 験設定はもう少し考慮しても良良かったのかも 14