Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ICML2013読み会 "ELLA: An Efficient Lifelong Learni...
Search
Yuya Unno
July 09, 2013
Research
0
12
ICML2013読み会 "ELLA: An Efficient Lifelong Learning Algorithm"
Yuya Unno
July 09, 2013
Tweet
Share
More Decks by Yuya Unno
See All by Yuya Unno
深層学習で切り拓くパーソナルロボットの未来 @東京大学 先端技術セミナー 工学最前線
unnonouno
0
13
深層学習時代の自然言語処理ビジネス @DLLAB 言語・音声ナイト
unnonouno
0
34
ベンチャー企業で言葉を扱うロボットの研究開発をする @東京大学 電子情報学特論I
unnonouno
0
25
PFNにおけるセミナー活動 @NLP2018 言語処理研究者・技術者の育成と未来への連携WS
unnonouno
0
7
進化するChainer @JSAI2017
unnonouno
0
12
予測型戦略を知るための機械学習チュートリアル @BigData Conference 2017 Spring
unnonouno
0
5
深層学習フレームワーク Chainerとその進化
unnonouno
0
13
深層学習による機械とのコミュニケーション @DeNA TechCon 2017
unnonouno
0
21
最先端NLP勉強会 “Learning Language Games through Interaction” @第8回最先端NLP勉強会
unnonouno
0
10
Other Decks in Research
See All in Research
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
56
20k
「並列化時代の乱数生成」
abap34
3
910
Practical The One Person Framework
asonas
1
1.8k
The many faces of AI and the role of mathematics
gpeyre
1
1.4k
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
110
ダイナミックプライシング とその実例
skmr2348
3
480
Weekly AI Agents News! 11月号 論文のアーカイブ
masatoto
0
180
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
350
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
200
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
900
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
21
4.8k
国際会議ACL2024参加報告
chemical_tree
1
350
Featured
See All Featured
KATA
mclloyd
29
14k
Gamification - CAS2011
davidbonilla
80
5.1k
RailsConf 2023
tenderlove
29
940
How to Ace a Technical Interview
jacobian
276
23k
We Have a Design System, Now What?
morganepeng
51
7.3k
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
4 Signs Your Business is Dying
shpigford
181
21k
Faster Mobile Websites
deanohume
305
30k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
Transcript
ELLA: An Efficient Lifelong Learning Algorithm 株式会社Preferred Infrastructure 海野 裕也
(@unnonouno) 2013/07/09 ICML2013読み会@東大
⾃自⼰己紹介 l 海野 裕也 (@unnonouno) l プリファードインフラストラクチャー l 情報検索索、レコメンド l 機械学習・データ解析研究開発
l Jubatusチームリーダー l 分散オンライン機械学習フレームワーク l 専⾨門 l ⾃自然⾔言語処理理 l テキストマイニング 2
要旨 l Lifelong learningのためにGO-MTLの精度度をほとんど落落 とさずに、1000倍早くした l ⼿手法の要旨は以下の2点 l テーラー展開して元の最適化の式を簡略略化 l
再計算の必要な項の計算を簡略略化 3
Lifelong learning 4
Lifelong learning l タスクが次々やってくる l Z(1), …, Z(Tmax) l 学習者はタスクの数も順番も知らない
l 各Zは教師有りの問題(分類か回帰) l 各タスクにはn t 個の教師ありデータが与えられる マルチタスクで、タスクが次々やってくるイメージ 5
Lifelong learningのキモチ(ホントか?) l ずっと学習し続ける l データセットはオンラインでやってくる l 過去の学習結果をうまく活かしたい(似たような問題、 組み合わせの問題が多い) 例例えば将来的に、ずっと学習し続けるインフラのようなモ
ノができた時を想定している(のかも) 6
Grouping and Overlap in Multi-Task Learning (GO-MTL) [Kumar&Daume III ’12]
l L: 損失関数 l w = Ls: モデルパラメータ l L: k個の隠れタスクの重み l s: 各タスクをLの線形和で表現する役割 l sは疎にしたいのでL1正則化 7 収束の証明のために ちょっと変えてある
GO-MTLが遅い l GO-MTL⾃自体はマルチタスクのバッチ学習⼿手法なので データが次々やってくるLifelong learningに適⽤用しよう とすると遅い l 2重ループが明らかに遅そう 8
⼯工夫1: 損失関数の部分をテーラー展開 9 θ(t)の周りで2次の テーラー展開
⼯工夫2: 全てのtに対するs(t)の最適化を⾏行行うのは⾮非効 率率率 10 s(t)の最適化を 順次行う
実際の更更新式 l L = A-1b l 実際に計算するときは、Aとbは差分更更新できるような⼯工 夫が⼊入っている 11
実験結果 12 バッチとほとんど同じ精度度で1000倍以上速い!!
あれ、よく⾒見見ると・・・ 13 Single Task Leaning (STL) でもそこそこだし、 当然もっと速い・・・
まとめ l マルチタスクのバッチ学習であるGO-MTLをLifelong learningに適⽤用するために、⾮非効率率率な部分を効率率率化した l ほとんど精度度を下げずに、1000倍以上⾼高速化した l タスクを独⽴立立に解いてもそこそこの精度度が出ていて、実 験設定はもう少し考慮しても良良かったのかも 14