Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Basketball Behavior Challenge 1st Place Solution
Search
Shotaro Ishihara
November 27, 2020
Technology
0
840
Basketball Behavior Challenge 1st Place Solution
「Sports Analyst Meetup #9」での発表資料
https://spoana.connpass.com/event/190699/
Shotaro Ishihara
November 27, 2020
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
130
記者・編集者との協働:情報技術が変えるニュースメディア / Kaishi PU 2024
upura
0
70
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
240
マルチモーダル AI 実装の課題と解決策 / Developer X Summit
upura
0
270
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
810
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
upura
3
1k
Quantifying Memorization and Detecting Training Data of Pre-trained Language Models using Japanese Newspaper
upura
0
66
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
500
第19回YANSシンポジウムスポンサー資料 / yans2024-nikkei
upura
0
72
Other Decks in Technology
See All in Technology
大規模アジャイルフレームワークから学ぶエンジニアマネジメントの本質
staka121
PRO
2
150
偏光画像処理ライブラリを作った話
elerac
1
150
Two Blades, One Journey: Engineering While Managing
ohbarye
3
730
システム・ML活用を広げるdbtのデータモデリング / Expanding System & ML Use with dbt Modeling
i125
1
310
Pwned Labsのすゝめ
ken5scal
0
190
データエンジニアリング領域におけるDuckDBのユースケース
chanyou0311
6
1.9k
Apache Iceberg Case Study in LY Corporation
lycorptech_jp
PRO
0
250
1行のコードから社会課題の解決へ: EMの探究、事業・技術・組織を紡ぐ実践知 / EM Conf 2025
9ma3r
6
1.9k
ESXi で仮想化した ARM 環境で LLM を動作させてみるぞ
unnowataru
0
150
ディスプレイ広告(Yahoo!広告・LINE広告)におけるバックエンド開発
lycorptech_jp
PRO
0
200
EDRの検知の仕組みと検知回避について
chayakonanaika
8
4.2k
コンピュータビジョンの社会実装について考えていたらゲームを作っていた話
takmin
1
550
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
693
190k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Practical Orchestrator
shlominoach
186
10k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.1k
Six Lessons from altMBA
skipperchong
27
3.6k
For a Future-Friendly Web
brad_frost
176
9.6k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
Transcript
Basketball Behavior Challenge 1位解法 Shotaro Ishihara, u++ (@upura0) Sports Analyst
Meetup #9 2020年12⽉13⽇ 1
本発表について 2019年12⽉〜2020年9⽉に開催されていた「Basketball Behavior Challenge: BBC2020」[1]の1位解法の紹介 時系列の座標データから「スクリーンプレイ」があったか否 かを判定するコンペ [1] https://competitions.codalab.org/competitions/23905 2
⾃⼰紹介 Shotaro Ishihara, u++ (@upura0) spoanaの運営メンバー 本業はメディア企業のデータサイエンティスト 本コンペは、spoana #7のLT発表で知った(アーカイブ[2]) 共著に『PythonではじめるKaggleスタートブック』(講談
社)[3] [2] https://www.youtube.com/channel/UCX1kD7i5JvvRIZdo9xjlakw [3] https://www.kspub.co.jp/book/detail/5190067.html 3
データの概要 frame scr_x scr_y usr_x usr_y uDF_x uDF_y bal_x bal_y
0 2.89 4.74 5.49 1.5 2.78 5.22 6.98 12.7 1 2.88 4.7 5.52 1.51 2.8 5.2 7.08 12.52 2 2.87 4.67 5.54 1.53 2.82 5.19 7.13 12.35 3 2.86 4.65 5.56 1.54 2.84 5.17 7.08 12.37 ... 学習⽤データセット(正例400、負例1128) テスト⽤データセット382 フレーム数は⼀定ではない 予測は0か1なので、予測値の閾値決定が必要 4
スコアの推移 5
機械学習の教師あり学習 [4] ⽯原ら, 『PythonではじめるKaggleスタートブック』, 講談社 6
最初のアプローチ 知識に基づき、予測に効きそうな7つの特徴量を抽出 . プレイヤー3⼈とボールの距離の最⼩値 C = 4 2 6 .
フレーム数 機械学習アルゴリズムには、過去実績から期待値が⼤きい 「LightGBM」を利⽤ 7
性能の向上のために 1位[5]と2位[6]の解法を⽐較 . 「tsfresh」による特徴抽出 . ニューラルネットワークの利⽤ . アンサンブル(複数の予測値の混ぜ合わせ) [5] https://github.com/upura/basketball-behavior-challenge
[6] https://github.com/takaiyuk/codalab-bbc2020 8
「tsfresh」による特徴抽出 特徴量の数: 11340 (4 agents * 2 dimensions + 6
distances between agents ) * 810 重要視された特徴量 9
ニューラルネットワーク 時系列の情報の最⼩値だけ使うと、情報を⼤きく失う 畳み込みニューラルネットワークを利⽤して、特徴を抽出 [7] https://www.mdpi.com/1424-8220/20/13/3697/htm 10
アンサンブル 複数の予測値の混ぜ合わせ 11
まとめ スポーツを題材にしたコンペは楽しい 知識を活かしてスコアが伸びていく 今はKaggleで「NFL 1st and Future - Impact Detection」[8]
が開催中 [8] https://www.kaggle.com/c/nfl-impact-detection 12