Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Basketball Behavior Challenge 1st Place Solution
Search
Shotaro Ishihara
November 27, 2020
Technology
0
830
Basketball Behavior Challenge 1st Place Solution
「Sports Analyst Meetup #9」での発表資料
https://spoana.connpass.com/event/190699/
Shotaro Ishihara
November 27, 2020
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
記者・編集者との協働:情報技術が変えるニュースメディア / Kaishi PU 2024
upura
0
4
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
140
マルチモーダル AI 実装の課題と解決策 / Developer X Summit
upura
0
200
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
670
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
upura
3
870
Quantifying Memorization and Detecting Training Data of Pre-trained Language Models using Japanese Newspaper
upura
0
47
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
420
第19回YANSシンポジウムスポンサー資料 / yans2024-nikkei
upura
0
47
Quantifying Memorization of Domain-Specific Pre-trained Language Models using Japanese Newspaper and Paywalls
upura
0
61
Other Decks in Technology
See All in Technology
[2024年12月版] Unity Catalogセットアップガイド / Unity Catalog Setup Guide
databricksjapan
0
120
Tailwind CSSとAtomic Designで実現する効率的な Web 開発の事例
toranoana
1
310
ガバメントクラウドのセキュリティ対策事例について
fujisawaryohei
0
320
Snykで始めるセキュリティ担当者とSREと開発者が楽になる脆弱性対応 / Getting started with Snyk Vulnerability Response
yamaguchitk333
2
160
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
5
52k
Wantedly での Datadog 活用事例
bgpat
1
120
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
340
Oracle Cloud Infrastructure IaaS 新機能アップデート 2024/9 - 2024/11
oracle4engineer
PRO
1
110
OCI Oracle Database Services新機能アップデート(2024/09-2024/11)
oracle4engineer
PRO
0
120
LINEヤフーのフロントエンド組織・体制の紹介【24年12月】
lycorp_recruit_jp
0
510
re:Invent をおうちで楽しんでみた ~CloudWatch のオブザーバビリティ機能がスゴい!/ Enjoyed AWS re:Invent from Home and CloudWatch Observability Feature is Amazing!
yuj1osm
0
110
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
9
3.1k
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
335
57k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Optimizing for Happiness
mojombo
376
70k
Agile that works and the tools we love
rasmusluckow
328
21k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.8k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Testing 201, or: Great Expectations
jmmastey
40
7.1k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
For a Future-Friendly Web
brad_frost
175
9.4k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
Basketball Behavior Challenge 1位解法 Shotaro Ishihara, u++ (@upura0) Sports Analyst
Meetup #9 2020年12⽉13⽇ 1
本発表について 2019年12⽉〜2020年9⽉に開催されていた「Basketball Behavior Challenge: BBC2020」[1]の1位解法の紹介 時系列の座標データから「スクリーンプレイ」があったか否 かを判定するコンペ [1] https://competitions.codalab.org/competitions/23905 2
⾃⼰紹介 Shotaro Ishihara, u++ (@upura0) spoanaの運営メンバー 本業はメディア企業のデータサイエンティスト 本コンペは、spoana #7のLT発表で知った(アーカイブ[2]) 共著に『PythonではじめるKaggleスタートブック』(講談
社)[3] [2] https://www.youtube.com/channel/UCX1kD7i5JvvRIZdo9xjlakw [3] https://www.kspub.co.jp/book/detail/5190067.html 3
データの概要 frame scr_x scr_y usr_x usr_y uDF_x uDF_y bal_x bal_y
0 2.89 4.74 5.49 1.5 2.78 5.22 6.98 12.7 1 2.88 4.7 5.52 1.51 2.8 5.2 7.08 12.52 2 2.87 4.67 5.54 1.53 2.82 5.19 7.13 12.35 3 2.86 4.65 5.56 1.54 2.84 5.17 7.08 12.37 ... 学習⽤データセット(正例400、負例1128) テスト⽤データセット382 フレーム数は⼀定ではない 予測は0か1なので、予測値の閾値決定が必要 4
スコアの推移 5
機械学習の教師あり学習 [4] ⽯原ら, 『PythonではじめるKaggleスタートブック』, 講談社 6
最初のアプローチ 知識に基づき、予測に効きそうな7つの特徴量を抽出 . プレイヤー3⼈とボールの距離の最⼩値 C = 4 2 6 .
フレーム数 機械学習アルゴリズムには、過去実績から期待値が⼤きい 「LightGBM」を利⽤ 7
性能の向上のために 1位[5]と2位[6]の解法を⽐較 . 「tsfresh」による特徴抽出 . ニューラルネットワークの利⽤ . アンサンブル(複数の予測値の混ぜ合わせ) [5] https://github.com/upura/basketball-behavior-challenge
[6] https://github.com/takaiyuk/codalab-bbc2020 8
「tsfresh」による特徴抽出 特徴量の数: 11340 (4 agents * 2 dimensions + 6
distances between agents ) * 810 重要視された特徴量 9
ニューラルネットワーク 時系列の情報の最⼩値だけ使うと、情報を⼤きく失う 畳み込みニューラルネットワークを利⽤して、特徴を抽出 [7] https://www.mdpi.com/1424-8220/20/13/3697/htm 10
アンサンブル 複数の予測値の混ぜ合わせ 11
まとめ スポーツを題材にしたコンペは楽しい 知識を活かしてスコアが伸びていく 今はKaggleで「NFL 1st and Future - Impact Detection」[8]
が開催中 [8] https://www.kaggle.com/c/nfl-impact-detection 12