Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
東海高校OBが語るマスコミでのデータサイエンティストの仕事 / data scientist ...
Search
Shotaro Ishihara
February 24, 2021
Education
0
1.9k
東海高校OBが語るマスコミでのデータサイエンティストの仕事 / data scientist in news media at satprogram38
中止となった「第38回サタデープログラム」で発表予定だった資料を、一般公開用に編集しました。
https://www.satprogram.net/list.html
Shotaro Ishihara
February 24, 2021
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
200
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
240
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
49
JOAI2025講評 / joai2025-review
upura
0
460
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
160
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
53
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
280
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
77
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
91
Other Decks in Education
See All in Education
20250830_本社にみんなの公園を作ってみた
yoneyan
0
130
質のよいアウトプットをできるようになるために~「読む・聞く、まとめる、言葉にする」を読んで~
amarelo_n24
0
270
2024-2025 CBT top items
cbtlibrary
0
130
Web Architectures - Lecture 2 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Présentation_2nde_2025.pdf
bernhardsvt
0
260
Técnicas y Tecnología para la Investigación Neurocientífica en el Neuromanagement
jvpcubias
0
170
AI for Learning
fonylew
0
200
あなたの言葉に力を与える、演繹的なアプローチ
logica0419
1
180
Web Application Frameworks - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
吉岡研究室紹介(2025年度)
kentaroy47
0
350
中央教育審議会 教育課程企画特別部会 情報・技術ワーキンググループに向けた提言 ー次期学習指導要領での情報活用能力の抜本的向上に向けてー
codeforeveryone
0
320
Test-NUTMEG紹介スライド
mugiiicha
0
230
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
The Language of Interfaces
destraynor
162
25k
Context Engineering - Making Every Token Count
addyosmani
6
250
Code Review Best Practice
trishagee
72
19k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
9
590
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Invisible Side of Design
smashingmag
302
51k
4 Signs Your Business is Dying
shpigford
185
22k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
870
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Transcript
౦ւߴߍ0#͕ޠΔ ϚείϛͰͷ σʔλαΠΤϯςΟετͷࣄ ੴݪↅଠ ౦ւߴߍճଔʢʣ ୈճαλσʔϓϩάϥϜʢதࢭʣ ˞ൃද༧ఆͩͬͨࢿྉΛɺҰൠެ։༻ʹฤू ݄
ٕज़ֵ৽ͰมΘΔϚείϛ σʔλαΠΤϯςΟετ l"*z͕ͨΒ͢՝ͱઓ z"*z࣌Λੜ͖͍ͯ͘
χϡʔεϝσΟΞ º σʔλαΠΤϯε
໊ݹͰੜ·ΕΔ த৽ฉ ಡച৽ฉ ΛಡΜͰҭͭ ౦ւߴߍʹೖֶ ౦େ ཧᶗ ʹೖֶˍ ެӹࡒஂ๏ਓ౦ژେֶ৽ฉࣾʹೖࣾ
౦ژେֶ৽ฉࣾʹͯ • هऀɺ൛ɺฤू • σδλϧ൛ͷ্ཱͪ͛ • Πϕϯτओ࠵ • ࠂӦۀ
౦େͰֶ෦ʹਐֶ͠ɺσʔλੳ ΛςʔϚʹݚڀ ଔɿίϛϡχςΟͷಛΛߟྀͨ͠ ݟकΓαʔϏεઃܭख๏ͷ։ൃ ˞ֶ෦ͷଔ༏लΛड
⚔χϡʔεϝσΟΞºσʔλαΠΤϯε • ࠃࡍχϡʔεϝσΟΞڠձʹΑΔ ʮੈքͷࡀҎԼਓʯʹબग़ • ੳͷੈքେձͰ༏উ • ʰ,BHHMFελʔτϒοΫʱग़൛
ٕज़ֵ৽ͰมΘΔ χϡʔεϝσΟΞ
ຊͷ৽ฉͷൃߦ෦ͷਪҠ IUUQTXXXQSFTTOFUPSKQEBUBDJSDVMBUJPODJSDVMBUJPOQIQ ੈଳ୯Ґ
എܠʹٕज़ֵ৽ • ΠϯλʔωοτɾεϚϗͷීٴ • 4/4ొʢ୭͕ൃ৴Ͱ͖Δ࣌ʣ • ʮϚείϛʯͷ่յ • ൃ৴ ༰ݕূ
ݸਓ࠷దԽ
ຖ͍ͬͯΔɾαʔϏεʁ✋ • εϚϗɾλϒϨοτɾύιίϯ ͳͲ • 4/4ɾಈը৴ ͳͲ • χϡʔεαΠτ •
ʢࢴͷʣ৽ฉ
ओઓΠϯλʔωοτ • Մॲ࣌ؒͷୣ͍߹͍ • ڝ߹4/4ɾಈը৴ ͳͲ • ৽ฉΠϯλʔωοτਐग़ • ΩʔϫʔυʮσδλϧԽɾࠃࡍԽʯ
৽ฉࣾͷࡏΓํ͕มΘͬͨ • ࢴͷ৽ฉΛ࡞Δਓ • 🆕 ిࢠ൛Λ࡞Δਓ • 🆕 ϢʔβͷԠΛݟΔਓ •
🆕 ϢʔβͷԠΛݟͯվળ͢Δਓ
σʔλαΠΤϯςΟετ ͱԿऀ͔
ࢴͷ৽ฉ͚ͩͩͬͨ࣌
Πϯλʔωοτ͕ීٴͨ࣌͠ 🆕 ిࢠ൛Λ࡞Δਓ 🆕 ϢʔβͷԠΛ ݟΔਓ 🆕 ϢʔβͷԠΛ ݟͯվળ͢Δਓ
ଟ͘ͷۀքͰى͖͍ͯΔྲྀΕ • ϢϏΩλε *OUFSOFUPG5IJOHT %JHJUBM5SBOTGPSNBUJPO • ͋ΒΏΔͷΛܭଌ͠׆༻͢Δ • ڭҭɾεϙʔπɾྲྀ௨ɾ ͳͲ
ʮσʔλʯ͕ՁΛ࢈Ή σʔλʢӳEBUBʣͱɺࣄ࣮ࢿྉΛ ͢͞ݴ༿ɻ ݴޠతʹෳܗͰ͋ΔͨΊɺ ݫີʹෳͷࣄͷू·Γͷ͜ͱ Λࢦ͠ɺ୯ܗ EBUVNʢσʔλϜʣͰ ͋Δɻ ຊޠXJLJQFEJBΑΓ
σʔλαΠΤϯςΟετͱ ʮσʔλ͔ΒՁΛग़͠ɺ Ϗδωε՝ʹ͑Λग़͢ ϓϩϑΣογϣφϧʯ σʔλαΠΤϯςΟετڠձ IUUQXXXEBUBTDJFOUJTUPSKQGJMFTOFXTQEG
खஈ • ͷઐࣝ • ֶɾ౷ܭͷࣝʢ࣌ʹʮ"*ʯʣ • ϓϩάϥϛϯάͷٕज़ ϓϩάϥϚɾ*5ΤϯδχΞͷҰछ
IUUQTICSPSHEBUBTDJFOUJTUUIFTFYJFTUKPCPGUIFTUDFOUVSZ ੈلɺ࠷ηΫγʔͳࣄ
IUUQTCMPHPTDPN BSUJDMF
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
• σʔλऩूج൫ͷߏங • ར༻ಈͷੳ • ࢪࡦͷʮ"#ςετʯ • ݟग़͠ͷग़͚͠ʢڧԽֶशʣ
ࢪࡦͷʮ"#ςετʯ " ΫϦοΫ ΫϦοΫ
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
هࣄاۀͷਪન աڈʹಡΜͩهࣄ ৽͍͠هࣄʢຊʣ Λֶश ਪન
จষΛʮϕΫτϧʯʹม աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐)
ϢʔβͷʮΈʯϕΫτϧΛࢉग़ աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐) ✗
ʮΈʯʹ͍ۙهࣄΛਪન աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐) ✗ (𝒙,
𝒚) = (𝟕, −𝟐) (𝒙, 𝒚) = (𝟑, 𝟔) ڑΛܭࢉ
จষΛʮϕΫτϧʯʹม ౦ւߴߍ0#͕ޠΔʂϚείϛʹ͓͚ΔσʔλαΠΤϯςΟ ετͷࣄ 𝑨 = (𝟏, 𝟏, 𝟏) ςϨϏہ͕౦ւߴߍʹऔࡐʹདྷͨΒ͍͠ 𝑨
= (𝟏, 𝟎, 𝟎) σʔλαΠΤϯςΟετʹͳΔͨΊʹ 𝑨 = (𝟎, 𝟎, 𝟏) ໊ݹʹདྷͨΒखӋઌͱϥʔϝϯͩ 𝑨 = (𝟎, 𝟎, 𝟎)
ϧʔϧ࡞Γқ͕ߴ͍ • Ͳͷ୯ޠΛ࠾༻͢Δʁ • Կݸͷ୯ޠΛج४ʹ͢Δʁ • ʮϚείϛʯʮςϨϏہʯҧ͏ʁ • ͲΕ͚͚ͩۙΕਪન͢Δʁ
ػցֶशʢڭࢣ͋Γֶशʣ
ʮܾఆڥքʯΛֶश աڈʹಡΜͩهࣄ Λֶश
ڭࢣ͋Γֶशͷ۩ମྫ • ը૾ೝࣝʢ(PPHMFը૾ݕࡧʣ • Իೝࣝʢ4JSJʣ • ໎ϝʔϧͷࣗಈྨʢ(NBJMʣ
σʔλੳͷੈքେձʢࢲͷ࣮ʣ • ϖοτͷҾ͖औΓ༧ଌʢ,BHHMF Ґʣ • ѱ࣭ͳίϝϯτͷྨʢ,BHHMF Ґʣ • $07*%ͷ3/"ͷ׆ੑ༧ଌʢ,BHHMF Ґʣ
• පͷ༧ଌʢ4*(/"5& Ґʣ • ٿͷདྷ༧ଌʢύɾϦʔά Ґʣ
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
• هࣄͷࣗಈཁɾࣗಈੜ • จষͷߍӾɾߍਖ਼ • όΠΞεͷݕ
l"*z͕ͨΒ͢ ՝ͱઓ
• ѱҙΛ͍࣋ͬͨํ • ݸਓ࠷దԽͷฐ • "*ͷެฏੑɾղऍੑ
ѱҙΛ࣋ͬͨίϯςϯπͷੜ • ϑΣΠΫχϡʔεͷ֦ࢄ • ੜٕज़ͷߴԽʼݕূ IUUQTZPVUVCFD2(%NF- IUUQTZPVUVCFG+3O&@)N"
("/ɿఢରతੜωοτϫʔΫͱԿ͔ ʙʮڭࢣͳֶ͠शʯʹΑΔը૾ੜ
ِ͔Λఆ͢Δίϯςετ͕։࠵ ༏উۚສԁ IUUQTXXXLBHHMFDPNDEFFQGBLFEFUFDUJPODIBMMFOHF
ϑΟϧλʔόϒϧ ࣗͷΈͷ༰͚͕ͩ৴͞Εͯࢹ͕ڱ͘ͳΔ ΤίʔνΣϯόʔ ࣗͱಉ͡ҙݟ͔Γʹ͢Δ͜ͱͰɺࣗͷҙݟ ͕ઈରతͩͱޡղͯ͠͠·͏
ηϨϯσΟϐςΟ ૉఢͳۮવɻࢴͷ৽ฉʹ٭ޫʁ 6*69Ͱͷ 4NBSU/FXTͷྫ IUUQTUFDIDSVODIDPNTNBSUOFXTMBUFTU OFXTEJTDPWFSZGFBUVSFTIPXTVTFSTBSUJDMFTGSPNBDSPTT UIFQPMJUJDBMTQFDUSVN
"*ͷஅͰਓੜΛࠨӈ͞ΕΔࣄྫ • "*ͳͥͦͷஅΛԼ͔ͨ͠ʁ • அྙཧతɾಓಙతʹଥ͔ • ઃܭࣗମʹͳ͍ͷ͔ʁ
ۙͰٞΛݺΜͩྫ • ࠾༻ʹؔ͢Δ"* • ۚ༥ʹؔ͢Δ"* • ਓछʹؔ͢Δ"*
l"*z࣌Λ ੜ͖͍ͯ͘
ຊͷ·ͱΊ • ٕज़ֵ৽ͰۀքʹมԽ͕ى͖ͨ • σʔλ͔ΒՁΛग़͢Δ࣌ • େͳͷ͍ํ
དྷऀͷϝοηʔδ ʮ"*ʯͷൃల͕͞·͟·ʹͳΔதɺਓؒʹ͔͠Ͱ͖ͳ͍ͷ ʮఆٛʯ͢Δ͜ͱͩͱݸਓతʹࢥ͍ͬͯ·͢ɻٕज़ͰԿͰՄೳʹ ͳͬͨͱ͖ɺԿΛͬͯΑ͍͔ܾΊΔͷ͕େͰ͢ɻʮཧܥɾจܥʯ ͱ͍͏ΈʹनΘΕͳ͍ɺΑΓྖҬԣஅతͳ͕ٞඞཁͰɺதߴੜ ͷօ͞Μʹͥͻ෯͘ઓͯ͠Έͯ΄͍͠Ͱ͢ɻࣗʮχϡʔε ϝσΟΞºσʔλαΠΤϯεʯͷֻ͚߹ΘͤͰࣄΛ͍ͯ͠·͢ɻ