Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
東海高校OBが語るマスコミでのデータサイエンティストの仕事 / data scientist ...
Search
Shotaro Ishihara
February 24, 2021
Education
0
1.9k
東海高校OBが語るマスコミでのデータサイエンティストの仕事 / data scientist in news media at satprogram38
中止となった「第38回サタデープログラム」で発表予定だった資料を、一般公開用に編集しました。
https://www.satprogram.net/list.html
Shotaro Ishihara
February 24, 2021
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
180
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
36
JOAI2025講評 / joai2025-review
upura
0
420
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
150
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
43
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
70
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
76
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
350
Other Decks in Education
See All in Education
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
120
20250910_エンジニアの成長は自覚するところから_サポーターズ勉強会
ippei0923
0
210
2025年度春学期 統計学 第10回 分布の推測とは ー 標本調査,度数分布と確率分布 (2025. 6. 12)
akiraasano
PRO
0
220
マネジメント「される側」 こそ覚悟を決めろ
nao_randd
10
5.5k
SISTEMA DE MEMORIA Y SU IMPACTO EN LAS DECISIONES.
jvpcubias
0
120
(2025) L'origami, mieux que la règle et le compas
mansuy
0
130
20250807_がんばらないコミュニティ運営
ponponmikankan
0
160
生成AI活用セミナー/GAI-workshop
gnutar
0
110
バックオフィス組織にも「チームトポロジー」の考えが使えるかもしれない!!
masakiokuda
0
120
データで見る赤ちゃんの成長
syuchimu
0
260
Data Management and Analytics Specialisation
signer
PRO
0
1.5k
核燃料政策を問う─英国の決断と日本
hide2kano
0
180
Featured
See All Featured
Fireside Chat
paigeccino
39
3.6k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
It's Worth the Effort
3n
187
28k
Become a Pro
speakerdeck
PRO
29
5.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
KATA
mclloyd
32
14k
What's in a price? How to price your products and services
michaelherold
246
12k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Transcript
౦ւߴߍ0#͕ޠΔ ϚείϛͰͷ σʔλαΠΤϯςΟετͷࣄ ੴݪↅଠ ౦ւߴߍճଔʢʣ ୈճαλσʔϓϩάϥϜʢதࢭʣ ˞ൃද༧ఆͩͬͨࢿྉΛɺҰൠެ։༻ʹฤू ݄
ٕज़ֵ৽ͰมΘΔϚείϛ σʔλαΠΤϯςΟετ l"*z͕ͨΒ͢՝ͱઓ z"*z࣌Λੜ͖͍ͯ͘
χϡʔεϝσΟΞ º σʔλαΠΤϯε
໊ݹͰੜ·ΕΔ த৽ฉ ಡച৽ฉ ΛಡΜͰҭͭ ౦ւߴߍʹೖֶ ౦େ ཧᶗ ʹೖֶˍ ެӹࡒஂ๏ਓ౦ژେֶ৽ฉࣾʹೖࣾ
౦ژେֶ৽ฉࣾʹͯ • هऀɺ൛ɺฤू • σδλϧ൛ͷ্ཱͪ͛ • Πϕϯτओ࠵ • ࠂӦۀ
౦େͰֶ෦ʹਐֶ͠ɺσʔλੳ ΛςʔϚʹݚڀ ଔɿίϛϡχςΟͷಛΛߟྀͨ͠ ݟकΓαʔϏεઃܭख๏ͷ։ൃ ˞ֶ෦ͷଔ༏लΛड
⚔χϡʔεϝσΟΞºσʔλαΠΤϯε • ࠃࡍχϡʔεϝσΟΞڠձʹΑΔ ʮੈքͷࡀҎԼਓʯʹબग़ • ੳͷੈքେձͰ༏উ • ʰ,BHHMFελʔτϒοΫʱग़൛
ٕज़ֵ৽ͰมΘΔ χϡʔεϝσΟΞ
ຊͷ৽ฉͷൃߦ෦ͷਪҠ IUUQTXXXQSFTTOFUPSKQEBUBDJSDVMBUJPODJSDVMBUJPOQIQ ੈଳ୯Ґ
എܠʹٕज़ֵ৽ • ΠϯλʔωοτɾεϚϗͷීٴ • 4/4ొʢ୭͕ൃ৴Ͱ͖Δ࣌ʣ • ʮϚείϛʯͷ่յ • ൃ৴ ༰ݕূ
ݸਓ࠷దԽ
ຖ͍ͬͯΔɾαʔϏεʁ✋ • εϚϗɾλϒϨοτɾύιίϯ ͳͲ • 4/4ɾಈը৴ ͳͲ • χϡʔεαΠτ •
ʢࢴͷʣ৽ฉ
ओઓΠϯλʔωοτ • Մॲ࣌ؒͷୣ͍߹͍ • ڝ߹4/4ɾಈը৴ ͳͲ • ৽ฉΠϯλʔωοτਐग़ • ΩʔϫʔυʮσδλϧԽɾࠃࡍԽʯ
৽ฉࣾͷࡏΓํ͕มΘͬͨ • ࢴͷ৽ฉΛ࡞Δਓ • 🆕 ిࢠ൛Λ࡞Δਓ • 🆕 ϢʔβͷԠΛݟΔਓ •
🆕 ϢʔβͷԠΛݟͯվળ͢Δਓ
σʔλαΠΤϯςΟετ ͱԿऀ͔
ࢴͷ৽ฉ͚ͩͩͬͨ࣌
Πϯλʔωοτ͕ීٴͨ࣌͠ 🆕 ిࢠ൛Λ࡞Δਓ 🆕 ϢʔβͷԠΛ ݟΔਓ 🆕 ϢʔβͷԠΛ ݟͯվળ͢Δਓ
ଟ͘ͷۀքͰى͖͍ͯΔྲྀΕ • ϢϏΩλε *OUFSOFUPG5IJOHT %JHJUBM5SBOTGPSNBUJPO • ͋ΒΏΔͷΛܭଌ͠׆༻͢Δ • ڭҭɾεϙʔπɾྲྀ௨ɾ ͳͲ
ʮσʔλʯ͕ՁΛ࢈Ή σʔλʢӳEBUBʣͱɺࣄ࣮ࢿྉΛ ͢͞ݴ༿ɻ ݴޠతʹෳܗͰ͋ΔͨΊɺ ݫີʹෳͷࣄͷू·Γͷ͜ͱ Λࢦ͠ɺ୯ܗ EBUVNʢσʔλϜʣͰ ͋Δɻ ຊޠXJLJQFEJBΑΓ
σʔλαΠΤϯςΟετͱ ʮσʔλ͔ΒՁΛग़͠ɺ Ϗδωε՝ʹ͑Λग़͢ ϓϩϑΣογϣφϧʯ σʔλαΠΤϯςΟετڠձ IUUQXXXEBUBTDJFOUJTUPSKQGJMFTOFXTQEG
खஈ • ͷઐࣝ • ֶɾ౷ܭͷࣝʢ࣌ʹʮ"*ʯʣ • ϓϩάϥϛϯάͷٕज़ ϓϩάϥϚɾ*5ΤϯδχΞͷҰछ
IUUQTICSPSHEBUBTDJFOUJTUUIFTFYJFTUKPCPGUIFTUDFOUVSZ ੈلɺ࠷ηΫγʔͳࣄ
IUUQTCMPHPTDPN BSUJDMF
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
• σʔλऩूج൫ͷߏங • ར༻ಈͷੳ • ࢪࡦͷʮ"#ςετʯ • ݟग़͠ͷग़͚͠ʢڧԽֶशʣ
ࢪࡦͷʮ"#ςετʯ " ΫϦοΫ ΫϦοΫ
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
هࣄاۀͷਪન աڈʹಡΜͩهࣄ ৽͍͠هࣄʢຊʣ Λֶश ਪન
จষΛʮϕΫτϧʯʹม աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐)
ϢʔβͷʮΈʯϕΫτϧΛࢉग़ աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐) ✗
ʮΈʯʹ͍ۙهࣄΛਪન աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐) ✗ (𝒙,
𝒚) = (𝟕, −𝟐) (𝒙, 𝒚) = (𝟑, 𝟔) ڑΛܭࢉ
จষΛʮϕΫτϧʯʹม ౦ւߴߍ0#͕ޠΔʂϚείϛʹ͓͚ΔσʔλαΠΤϯςΟ ετͷࣄ 𝑨 = (𝟏, 𝟏, 𝟏) ςϨϏہ͕౦ւߴߍʹऔࡐʹདྷͨΒ͍͠ 𝑨
= (𝟏, 𝟎, 𝟎) σʔλαΠΤϯςΟετʹͳΔͨΊʹ 𝑨 = (𝟎, 𝟎, 𝟏) ໊ݹʹདྷͨΒखӋઌͱϥʔϝϯͩ 𝑨 = (𝟎, 𝟎, 𝟎)
ϧʔϧ࡞Γқ͕ߴ͍ • Ͳͷ୯ޠΛ࠾༻͢Δʁ • Կݸͷ୯ޠΛج४ʹ͢Δʁ • ʮϚείϛʯʮςϨϏہʯҧ͏ʁ • ͲΕ͚͚ͩۙΕਪન͢Δʁ
ػցֶशʢڭࢣ͋Γֶशʣ
ʮܾఆڥքʯΛֶश աڈʹಡΜͩهࣄ Λֶश
ڭࢣ͋Γֶशͷ۩ମྫ • ը૾ೝࣝʢ(PPHMFը૾ݕࡧʣ • Իೝࣝʢ4JSJʣ • ໎ϝʔϧͷࣗಈྨʢ(NBJMʣ
σʔλੳͷੈքେձʢࢲͷ࣮ʣ • ϖοτͷҾ͖औΓ༧ଌʢ,BHHMF Ґʣ • ѱ࣭ͳίϝϯτͷྨʢ,BHHMF Ґʣ • $07*%ͷ3/"ͷ׆ੑ༧ଌʢ,BHHMF Ґʣ
• පͷ༧ଌʢ4*(/"5& Ґʣ • ٿͷདྷ༧ଌʢύɾϦʔά Ґʣ
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
• هࣄͷࣗಈཁɾࣗಈੜ • จষͷߍӾɾߍਖ਼ • όΠΞεͷݕ
l"*z͕ͨΒ͢ ՝ͱઓ
• ѱҙΛ͍࣋ͬͨํ • ݸਓ࠷దԽͷฐ • "*ͷެฏੑɾղऍੑ
ѱҙΛ࣋ͬͨίϯςϯπͷੜ • ϑΣΠΫχϡʔεͷ֦ࢄ • ੜٕज़ͷߴԽʼݕূ IUUQTZPVUVCFD2(%NF- IUUQTZPVUVCFG+3O&@)N"
("/ɿఢରతੜωοτϫʔΫͱԿ͔ ʙʮڭࢣͳֶ͠शʯʹΑΔը૾ੜ
ِ͔Λఆ͢Δίϯςετ͕։࠵ ༏উۚສԁ IUUQTXXXLBHHMFDPNDEFFQGBLFEFUFDUJPODIBMMFOHF
ϑΟϧλʔόϒϧ ࣗͷΈͷ༰͚͕ͩ৴͞Εͯࢹ͕ڱ͘ͳΔ ΤίʔνΣϯόʔ ࣗͱಉ͡ҙݟ͔Γʹ͢Δ͜ͱͰɺࣗͷҙݟ ͕ઈରతͩͱޡղͯ͠͠·͏
ηϨϯσΟϐςΟ ૉఢͳۮવɻࢴͷ৽ฉʹ٭ޫʁ 6*69Ͱͷ 4NBSU/FXTͷྫ IUUQTUFDIDSVODIDPNTNBSUOFXTMBUFTU OFXTEJTDPWFSZGFBUVSFTIPXTVTFSTBSUJDMFTGSPNBDSPTT UIFQPMJUJDBMTQFDUSVN
"*ͷஅͰਓੜΛࠨӈ͞ΕΔࣄྫ • "*ͳͥͦͷஅΛԼ͔ͨ͠ʁ • அྙཧతɾಓಙతʹଥ͔ • ઃܭࣗମʹͳ͍ͷ͔ʁ
ۙͰٞΛݺΜͩྫ • ࠾༻ʹؔ͢Δ"* • ۚ༥ʹؔ͢Δ"* • ਓछʹؔ͢Δ"*
l"*z࣌Λ ੜ͖͍ͯ͘
ຊͷ·ͱΊ • ٕज़ֵ৽ͰۀքʹมԽ͕ى͖ͨ • σʔλ͔ΒՁΛग़͢Δ࣌ • େͳͷ͍ํ
དྷऀͷϝοηʔδ ʮ"*ʯͷൃల͕͞·͟·ʹͳΔதɺਓؒʹ͔͠Ͱ͖ͳ͍ͷ ʮఆٛʯ͢Δ͜ͱͩͱݸਓతʹࢥ͍ͬͯ·͢ɻٕज़ͰԿͰՄೳʹ ͳͬͨͱ͖ɺԿΛͬͯΑ͍͔ܾΊΔͷ͕େͰ͢ɻʮཧܥɾจܥʯ ͱ͍͏ΈʹनΘΕͳ͍ɺΑΓྖҬԣஅతͳ͕ٞඞཁͰɺதߴੜ ͷօ͞Μʹͥͻ෯͘ઓͯ͠Έͯ΄͍͠Ͱ͢ɻࣗʮχϡʔε ϝσΟΞºσʔλαΠΤϯεʯͷֻ͚߹ΘͤͰࣄΛ͍ͯ͠·͢ɻ