Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
東海高校OBが語るマスコミでのデータサイエンティストの仕事 / data scientist ...
Search
Shotaro Ishihara
February 24, 2021
Education
0
1.9k
東海高校OBが語るマスコミでのデータサイエンティストの仕事 / data scientist in news media at satprogram38
中止となった「第38回サタデープログラム」で発表予定だった資料を、一般公開用に編集しました。
https://www.satprogram.net/list.html
Shotaro Ishihara
February 24, 2021
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
180
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
37
JOAI2025講評 / joai2025-review
upura
0
420
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
150
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
44
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
70
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
77
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
350
Other Decks in Education
See All in Education
2025/06/05_読み漁り学習
nag8
0
190
JPCERTから始まる草の根活動~セキュリティ文化醸成のためのアクション~
masakiokuda
0
220
Linuxのよく使うコマンドを解説
mickey_kubo
1
260
ROSConJP 2025 発表スライド
f0reacharr
0
200
Técnicas y Tecnología para la Investigación Neurocientífica en el Neuromanagement
jvpcubias
0
120
Course Review - Lecture 12 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.8k
質のよいアウトプットをできるようになるために~「読む・聞く、まとめる、言葉にする」を読んで~
amarelo_n24
0
210
OJTに夢を見すぎていませんか? ロールプレイ研修の試行錯誤/tryanderror-in-roleplaying-training
takipone
1
220
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
170
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
3
670
核燃料政策を問う─英国の決断と日本
hide2kano
0
180
技術勉強会 〜 OAuth & OIDC 入門編 / 20250528 OAuth and OIDC
oidfj
5
1.8k
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Building Adaptive Systems
keathley
43
2.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Into the Great Unknown - MozCon
thekraken
40
2k
Being A Developer After 40
akosma
90
590k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Side Projects
sachag
455
43k
How STYLIGHT went responsive
nonsquared
100
5.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
Transcript
౦ւߴߍ0#͕ޠΔ ϚείϛͰͷ σʔλαΠΤϯςΟετͷࣄ ੴݪↅଠ ౦ւߴߍճଔʢʣ ୈճαλσʔϓϩάϥϜʢதࢭʣ ˞ൃද༧ఆͩͬͨࢿྉΛɺҰൠެ։༻ʹฤू ݄
ٕज़ֵ৽ͰมΘΔϚείϛ σʔλαΠΤϯςΟετ l"*z͕ͨΒ͢՝ͱઓ z"*z࣌Λੜ͖͍ͯ͘
χϡʔεϝσΟΞ º σʔλαΠΤϯε
໊ݹͰੜ·ΕΔ த৽ฉ ಡച৽ฉ ΛಡΜͰҭͭ ౦ւߴߍʹೖֶ ౦େ ཧᶗ ʹೖֶˍ ެӹࡒஂ๏ਓ౦ژେֶ৽ฉࣾʹೖࣾ
౦ژେֶ৽ฉࣾʹͯ • هऀɺ൛ɺฤू • σδλϧ൛ͷ্ཱͪ͛ • Πϕϯτओ࠵ • ࠂӦۀ
౦େͰֶ෦ʹਐֶ͠ɺσʔλੳ ΛςʔϚʹݚڀ ଔɿίϛϡχςΟͷಛΛߟྀͨ͠ ݟकΓαʔϏεઃܭख๏ͷ։ൃ ˞ֶ෦ͷଔ༏लΛड
⚔χϡʔεϝσΟΞºσʔλαΠΤϯε • ࠃࡍχϡʔεϝσΟΞڠձʹΑΔ ʮੈքͷࡀҎԼਓʯʹબग़ • ੳͷੈքେձͰ༏উ • ʰ,BHHMFελʔτϒοΫʱग़൛
ٕज़ֵ৽ͰมΘΔ χϡʔεϝσΟΞ
ຊͷ৽ฉͷൃߦ෦ͷਪҠ IUUQTXXXQSFTTOFUPSKQEBUBDJSDVMBUJPODJSDVMBUJPOQIQ ੈଳ୯Ґ
എܠʹٕज़ֵ৽ • ΠϯλʔωοτɾεϚϗͷීٴ • 4/4ొʢ୭͕ൃ৴Ͱ͖Δ࣌ʣ • ʮϚείϛʯͷ่յ • ൃ৴ ༰ݕূ
ݸਓ࠷దԽ
ຖ͍ͬͯΔɾαʔϏεʁ✋ • εϚϗɾλϒϨοτɾύιίϯ ͳͲ • 4/4ɾಈը৴ ͳͲ • χϡʔεαΠτ •
ʢࢴͷʣ৽ฉ
ओઓΠϯλʔωοτ • Մॲ࣌ؒͷୣ͍߹͍ • ڝ߹4/4ɾಈը৴ ͳͲ • ৽ฉΠϯλʔωοτਐग़ • ΩʔϫʔυʮσδλϧԽɾࠃࡍԽʯ
৽ฉࣾͷࡏΓํ͕มΘͬͨ • ࢴͷ৽ฉΛ࡞Δਓ • 🆕 ిࢠ൛Λ࡞Δਓ • 🆕 ϢʔβͷԠΛݟΔਓ •
🆕 ϢʔβͷԠΛݟͯվળ͢Δਓ
σʔλαΠΤϯςΟετ ͱԿऀ͔
ࢴͷ৽ฉ͚ͩͩͬͨ࣌
Πϯλʔωοτ͕ීٴͨ࣌͠ 🆕 ిࢠ൛Λ࡞Δਓ 🆕 ϢʔβͷԠΛ ݟΔਓ 🆕 ϢʔβͷԠΛ ݟͯվળ͢Δਓ
ଟ͘ͷۀքͰى͖͍ͯΔྲྀΕ • ϢϏΩλε *OUFSOFUPG5IJOHT %JHJUBM5SBOTGPSNBUJPO • ͋ΒΏΔͷΛܭଌ͠׆༻͢Δ • ڭҭɾεϙʔπɾྲྀ௨ɾ ͳͲ
ʮσʔλʯ͕ՁΛ࢈Ή σʔλʢӳEBUBʣͱɺࣄ࣮ࢿྉΛ ͢͞ݴ༿ɻ ݴޠతʹෳܗͰ͋ΔͨΊɺ ݫີʹෳͷࣄͷू·Γͷ͜ͱ Λࢦ͠ɺ୯ܗ EBUVNʢσʔλϜʣͰ ͋Δɻ ຊޠXJLJQFEJBΑΓ
σʔλαΠΤϯςΟετͱ ʮσʔλ͔ΒՁΛग़͠ɺ Ϗδωε՝ʹ͑Λग़͢ ϓϩϑΣογϣφϧʯ σʔλαΠΤϯςΟετڠձ IUUQXXXEBUBTDJFOUJTUPSKQGJMFTOFXTQEG
खஈ • ͷઐࣝ • ֶɾ౷ܭͷࣝʢ࣌ʹʮ"*ʯʣ • ϓϩάϥϛϯάͷٕज़ ϓϩάϥϚɾ*5ΤϯδχΞͷҰछ
IUUQTICSPSHEBUBTDJFOUJTUUIFTFYJFTUKPCPGUIFTUDFOUVSZ ੈلɺ࠷ηΫγʔͳࣄ
IUUQTCMPHPTDPN BSUJDMF
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
• σʔλऩूج൫ͷߏங • ར༻ಈͷੳ • ࢪࡦͷʮ"#ςετʯ • ݟग़͠ͷग़͚͠ʢڧԽֶशʣ
ࢪࡦͷʮ"#ςετʯ " ΫϦοΫ ΫϦοΫ
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
هࣄاۀͷਪન աڈʹಡΜͩهࣄ ৽͍͠هࣄʢຊʣ Λֶश ਪન
จষΛʮϕΫτϧʯʹม աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐)
ϢʔβͷʮΈʯϕΫτϧΛࢉग़ աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐) ✗
ʮΈʯʹ͍ۙهࣄΛਪન աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐) ✗ (𝒙,
𝒚) = (𝟕, −𝟐) (𝒙, 𝒚) = (𝟑, 𝟔) ڑΛܭࢉ
จষΛʮϕΫτϧʯʹม ౦ւߴߍ0#͕ޠΔʂϚείϛʹ͓͚ΔσʔλαΠΤϯςΟ ετͷࣄ 𝑨 = (𝟏, 𝟏, 𝟏) ςϨϏہ͕౦ւߴߍʹऔࡐʹདྷͨΒ͍͠ 𝑨
= (𝟏, 𝟎, 𝟎) σʔλαΠΤϯςΟετʹͳΔͨΊʹ 𝑨 = (𝟎, 𝟎, 𝟏) ໊ݹʹདྷͨΒखӋઌͱϥʔϝϯͩ 𝑨 = (𝟎, 𝟎, 𝟎)
ϧʔϧ࡞Γқ͕ߴ͍ • Ͳͷ୯ޠΛ࠾༻͢Δʁ • Կݸͷ୯ޠΛج४ʹ͢Δʁ • ʮϚείϛʯʮςϨϏہʯҧ͏ʁ • ͲΕ͚͚ͩۙΕਪન͢Δʁ
ػցֶशʢڭࢣ͋Γֶशʣ
ʮܾఆڥքʯΛֶश աڈʹಡΜͩهࣄ Λֶश
ڭࢣ͋Γֶशͷ۩ମྫ • ը૾ೝࣝʢ(PPHMFը૾ݕࡧʣ • Իೝࣝʢ4JSJʣ • ໎ϝʔϧͷࣗಈྨʢ(NBJMʣ
σʔλੳͷੈքେձʢࢲͷ࣮ʣ • ϖοτͷҾ͖औΓ༧ଌʢ,BHHMF Ґʣ • ѱ࣭ͳίϝϯτͷྨʢ,BHHMF Ґʣ • $07*%ͷ3/"ͷ׆ੑ༧ଌʢ,BHHMF Ґʣ
• පͷ༧ଌʢ4*(/"5& Ґʣ • ٿͷདྷ༧ଌʢύɾϦʔά Ґʣ
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
• هࣄͷࣗಈཁɾࣗಈੜ • จষͷߍӾɾߍਖ਼ • όΠΞεͷݕ
l"*z͕ͨΒ͢ ՝ͱઓ
• ѱҙΛ͍࣋ͬͨํ • ݸਓ࠷దԽͷฐ • "*ͷެฏੑɾղऍੑ
ѱҙΛ࣋ͬͨίϯςϯπͷੜ • ϑΣΠΫχϡʔεͷ֦ࢄ • ੜٕज़ͷߴԽʼݕূ IUUQTZPVUVCFD2(%NF- IUUQTZPVUVCFG+3O&@)N"
("/ɿఢରతੜωοτϫʔΫͱԿ͔ ʙʮڭࢣͳֶ͠शʯʹΑΔը૾ੜ
ِ͔Λఆ͢Δίϯςετ͕։࠵ ༏উۚສԁ IUUQTXXXLBHHMFDPNDEFFQGBLFEFUFDUJPODIBMMFOHF
ϑΟϧλʔόϒϧ ࣗͷΈͷ༰͚͕ͩ৴͞Εͯࢹ͕ڱ͘ͳΔ ΤίʔνΣϯόʔ ࣗͱಉ͡ҙݟ͔Γʹ͢Δ͜ͱͰɺࣗͷҙݟ ͕ઈରతͩͱޡղͯ͠͠·͏
ηϨϯσΟϐςΟ ૉఢͳۮવɻࢴͷ৽ฉʹ٭ޫʁ 6*69Ͱͷ 4NBSU/FXTͷྫ IUUQTUFDIDSVODIDPNTNBSUOFXTMBUFTU OFXTEJTDPWFSZGFBUVSFTIPXTVTFSTBSUJDMFTGSPNBDSPTT UIFQPMJUJDBMTQFDUSVN
"*ͷஅͰਓੜΛࠨӈ͞ΕΔࣄྫ • "*ͳͥͦͷஅΛԼ͔ͨ͠ʁ • அྙཧతɾಓಙతʹଥ͔ • ઃܭࣗମʹͳ͍ͷ͔ʁ
ۙͰٞΛݺΜͩྫ • ࠾༻ʹؔ͢Δ"* • ۚ༥ʹؔ͢Δ"* • ਓछʹؔ͢Δ"*
l"*z࣌Λ ੜ͖͍ͯ͘
ຊͷ·ͱΊ • ٕज़ֵ৽ͰۀքʹมԽ͕ى͖ͨ • σʔλ͔ΒՁΛग़͢Δ࣌ • େͳͷ͍ํ
དྷऀͷϝοηʔδ ʮ"*ʯͷൃల͕͞·͟·ʹͳΔதɺਓؒʹ͔͠Ͱ͖ͳ͍ͷ ʮఆٛʯ͢Δ͜ͱͩͱݸਓతʹࢥ͍ͬͯ·͢ɻٕज़ͰԿͰՄೳʹ ͳͬͨͱ͖ɺԿΛͬͯΑ͍͔ܾΊΔͷ͕େͰ͢ɻʮཧܥɾจܥʯ ͱ͍͏ΈʹनΘΕͳ͍ɺΑΓྖҬԣஅతͳ͕ٞඞཁͰɺதߴੜ ͷօ͞Μʹͥͻ෯͘ઓͯ͠Έͯ΄͍͠Ͱ͢ɻࣗʮχϡʔε ϝσΟΞºσʔλαΠΤϯεʯͷֻ͚߹ΘͤͰࣄΛ͍ͯ͠·͢ɻ