Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
東海高校OBが語るマスコミでのデータサイエンティストの仕事 / data scientist ...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Shotaro Ishihara
February 24, 2021
Education
0
1.9k
東海高校OBが語るマスコミでのデータサイエンティストの仕事 / data scientist in news media at satprogram38
中止となった「第38回サタデープログラム」で発表予定だった資料を、一般公開用に編集しました。
https://www.satprogram.net/list.html
Shotaro Ishihara
February 24, 2021
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
JAPAN AI CUP Prediction Tutorial
upura
2
710
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
470
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
83
JOAI2025講評 / joai2025-review
upura
0
1.4k
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
200
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
95
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
330
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
110
Other Decks in Education
See All in Education
Activité_5_-_Les_indicateurs_du_climat_global.pdf
bernhardsvt
0
150
2026 Medicare 101 Presentation
robinlee
PRO
0
100
IKIGAI World Fes:program
tsutsumi
1
2.6k
Node-REDで広がるプログラミング教育の可能性
ueponx
1
270
【洋書和訳:さよならを待つふたりのために】第1章 出会いとメタファー
yaginumatti
0
250
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
3.1k
悩める リーダー達に 届けたい書籍|レジリエントマネジメント 書籍イントロダクション-260126
mimoza60
0
300
栃木にいても「だいじ」だっぺ〜! 栃木&全国アジャイルコミュニティへの参加・運営の魅力
sasakendayo
1
150
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
230
滑空スポーツ講習会2025(実技講習)EMFT講習 実施要領/JSA EMFT 2025 procedure
jsaseminar
0
110
2025年の本当に大事なAI動向まとめ
frievea
0
170
TinyGoをWebブラウザで動かすための方法+アルファ_20260201
masakiokuda
2
230
Featured
See All Featured
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
Code Review Best Practice
trishagee
74
20k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
62
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
RailsConf 2023
tenderlove
30
1.3k
Mind Mapping
helmedeiros
PRO
0
89
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Google's AI Overviews - The New Search
badams
0
910
Bash Introduction
62gerente
615
210k
Statistics for Hackers
jakevdp
799
230k
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
Transcript
౦ւߴߍ0#͕ޠΔ ϚείϛͰͷ σʔλαΠΤϯςΟετͷࣄ ੴݪↅଠ ౦ւߴߍճଔʢʣ ୈճαλσʔϓϩάϥϜʢதࢭʣ ˞ൃද༧ఆͩͬͨࢿྉΛɺҰൠެ։༻ʹฤू ݄
ٕज़ֵ৽ͰมΘΔϚείϛ σʔλαΠΤϯςΟετ l"*z͕ͨΒ͢՝ͱઓ z"*z࣌Λੜ͖͍ͯ͘
χϡʔεϝσΟΞ º σʔλαΠΤϯε
໊ݹͰੜ·ΕΔ த৽ฉ ಡച৽ฉ ΛಡΜͰҭͭ ౦ւߴߍʹೖֶ ౦େ ཧᶗ ʹೖֶˍ ެӹࡒஂ๏ਓ౦ژେֶ৽ฉࣾʹೖࣾ
౦ژେֶ৽ฉࣾʹͯ • هऀɺ൛ɺฤू • σδλϧ൛ͷ্ཱͪ͛ • Πϕϯτओ࠵ • ࠂӦۀ
౦େͰֶ෦ʹਐֶ͠ɺσʔλੳ ΛςʔϚʹݚڀ ଔɿίϛϡχςΟͷಛΛߟྀͨ͠ ݟकΓαʔϏεઃܭख๏ͷ։ൃ ˞ֶ෦ͷଔ༏लΛड
⚔χϡʔεϝσΟΞºσʔλαΠΤϯε • ࠃࡍχϡʔεϝσΟΞڠձʹΑΔ ʮੈքͷࡀҎԼਓʯʹબग़ • ੳͷੈքେձͰ༏উ • ʰ,BHHMFελʔτϒοΫʱग़൛
ٕज़ֵ৽ͰมΘΔ χϡʔεϝσΟΞ
ຊͷ৽ฉͷൃߦ෦ͷਪҠ IUUQTXXXQSFTTOFUPSKQEBUBDJSDVMBUJPODJSDVMBUJPOQIQ ੈଳ୯Ґ
എܠʹٕज़ֵ৽ • ΠϯλʔωοτɾεϚϗͷීٴ • 4/4ొʢ୭͕ൃ৴Ͱ͖Δ࣌ʣ • ʮϚείϛʯͷ่յ • ൃ৴ ༰ݕূ
ݸਓ࠷దԽ
ຖ͍ͬͯΔɾαʔϏεʁ✋ • εϚϗɾλϒϨοτɾύιίϯ ͳͲ • 4/4ɾಈը৴ ͳͲ • χϡʔεαΠτ •
ʢࢴͷʣ৽ฉ
ओઓΠϯλʔωοτ • Մॲ࣌ؒͷୣ͍߹͍ • ڝ߹4/4ɾಈը৴ ͳͲ • ৽ฉΠϯλʔωοτਐग़ • ΩʔϫʔυʮσδλϧԽɾࠃࡍԽʯ
৽ฉࣾͷࡏΓํ͕มΘͬͨ • ࢴͷ৽ฉΛ࡞Δਓ • 🆕 ిࢠ൛Λ࡞Δਓ • 🆕 ϢʔβͷԠΛݟΔਓ •
🆕 ϢʔβͷԠΛݟͯվળ͢Δਓ
σʔλαΠΤϯςΟετ ͱԿऀ͔
ࢴͷ৽ฉ͚ͩͩͬͨ࣌
Πϯλʔωοτ͕ීٴͨ࣌͠ 🆕 ిࢠ൛Λ࡞Δਓ 🆕 ϢʔβͷԠΛ ݟΔਓ 🆕 ϢʔβͷԠΛ ݟͯվળ͢Δਓ
ଟ͘ͷۀքͰى͖͍ͯΔྲྀΕ • ϢϏΩλε *OUFSOFUPG5IJOHT %JHJUBM5SBOTGPSNBUJPO • ͋ΒΏΔͷΛܭଌ͠׆༻͢Δ • ڭҭɾεϙʔπɾྲྀ௨ɾ ͳͲ
ʮσʔλʯ͕ՁΛ࢈Ή σʔλʢӳEBUBʣͱɺࣄ࣮ࢿྉΛ ͢͞ݴ༿ɻ ݴޠతʹෳܗͰ͋ΔͨΊɺ ݫີʹෳͷࣄͷू·Γͷ͜ͱ Λࢦ͠ɺ୯ܗ EBUVNʢσʔλϜʣͰ ͋Δɻ ຊޠXJLJQFEJBΑΓ
σʔλαΠΤϯςΟετͱ ʮσʔλ͔ΒՁΛग़͠ɺ Ϗδωε՝ʹ͑Λग़͢ ϓϩϑΣογϣφϧʯ σʔλαΠΤϯςΟετڠձ IUUQXXXEBUBTDJFOUJTUPSKQGJMFTOFXTQEG
खஈ • ͷઐࣝ • ֶɾ౷ܭͷࣝʢ࣌ʹʮ"*ʯʣ • ϓϩάϥϛϯάͷٕज़ ϓϩάϥϚɾ*5ΤϯδχΞͷҰछ
IUUQTICSPSHEBUBTDJFOUJTUUIFTFYJFTUKPCPGUIFTUDFOUVSZ ੈلɺ࠷ηΫγʔͳࣄ
IUUQTCMPHPTDPN BSUJDMF
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
• σʔλऩूج൫ͷߏங • ར༻ಈͷੳ • ࢪࡦͷʮ"#ςετʯ • ݟग़͠ͷग़͚͠ʢڧԽֶशʣ
ࢪࡦͷʮ"#ςετʯ " ΫϦοΫ ΫϦοΫ
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
هࣄاۀͷਪન աڈʹಡΜͩهࣄ ৽͍͠هࣄʢຊʣ Λֶश ਪન
จষΛʮϕΫτϧʯʹม աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐)
ϢʔβͷʮΈʯϕΫτϧΛࢉग़ աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐) ✗
ʮΈʯʹ͍ۙهࣄΛਪન աڈʹಡΜͩهࣄ Λֶश (𝒙, 𝒚) = (𝟕, 𝟐) ✗ (𝒙,
𝒚) = (𝟕, −𝟐) (𝒙, 𝒚) = (𝟑, 𝟔) ڑΛܭࢉ
จষΛʮϕΫτϧʯʹม ౦ւߴߍ0#͕ޠΔʂϚείϛʹ͓͚ΔσʔλαΠΤϯςΟ ετͷࣄ 𝑨 = (𝟏, 𝟏, 𝟏) ςϨϏہ͕౦ւߴߍʹऔࡐʹདྷͨΒ͍͠ 𝑨
= (𝟏, 𝟎, 𝟎) σʔλαΠΤϯςΟετʹͳΔͨΊʹ 𝑨 = (𝟎, 𝟎, 𝟏) ໊ݹʹདྷͨΒखӋઌͱϥʔϝϯͩ 𝑨 = (𝟎, 𝟎, 𝟎)
ϧʔϧ࡞Γқ͕ߴ͍ • Ͳͷ୯ޠΛ࠾༻͢Δʁ • Կݸͷ୯ޠΛج४ʹ͢Δʁ • ʮϚείϛʯʮςϨϏہʯҧ͏ʁ • ͲΕ͚͚ͩۙΕਪન͢Δʁ
ػցֶशʢڭࢣ͋Γֶशʣ
ʮܾఆڥքʯΛֶश աڈʹಡΜͩهࣄ Λֶश
ڭࢣ͋Γֶशͷ۩ମྫ • ը૾ೝࣝʢ(PPHMFը૾ݕࡧʣ • Իೝࣝʢ4JSJʣ • ໎ϝʔϧͷࣗಈྨʢ(NBJMʣ
σʔλੳͷੈքେձʢࢲͷ࣮ʣ • ϖοτͷҾ͖औΓ༧ଌʢ,BHHMF Ґʣ • ѱ࣭ͳίϝϯτͷྨʢ,BHHMF Ґʣ • $07*%ͷ3/"ͷ׆ੑ༧ଌʢ,BHHMF Ґʣ
• පͷ༧ଌʢ4*(/"5& Ґʣ • ٿͷདྷ༧ଌʢύɾϦʔά Ґʣ
۩ମతʹ͍ͬͯΔ͜ͱͷൈਮ • Ϣʔβͷߦಈੳ • هࣄاۀͷਪન • ۀͷࣗಈԽɾޮԽ
• هࣄͷࣗಈཁɾࣗಈੜ • จষͷߍӾɾߍਖ਼ • όΠΞεͷݕ
l"*z͕ͨΒ͢ ՝ͱઓ
• ѱҙΛ͍࣋ͬͨํ • ݸਓ࠷దԽͷฐ • "*ͷެฏੑɾղऍੑ
ѱҙΛ࣋ͬͨίϯςϯπͷੜ • ϑΣΠΫχϡʔεͷ֦ࢄ • ੜٕज़ͷߴԽʼݕূ IUUQTZPVUVCFD2(%NF- IUUQTZPVUVCFG+3O&@)N"
("/ɿఢରతੜωοτϫʔΫͱԿ͔ ʙʮڭࢣͳֶ͠शʯʹΑΔը૾ੜ
ِ͔Λఆ͢Δίϯςετ͕։࠵ ༏উۚສԁ IUUQTXXXLBHHMFDPNDEFFQGBLFEFUFDUJPODIBMMFOHF
ϑΟϧλʔόϒϧ ࣗͷΈͷ༰͚͕ͩ৴͞Εͯࢹ͕ڱ͘ͳΔ ΤίʔνΣϯόʔ ࣗͱಉ͡ҙݟ͔Γʹ͢Δ͜ͱͰɺࣗͷҙݟ ͕ઈରతͩͱޡղͯ͠͠·͏
ηϨϯσΟϐςΟ ૉఢͳۮવɻࢴͷ৽ฉʹ٭ޫʁ 6*69Ͱͷ 4NBSU/FXTͷྫ IUUQTUFDIDSVODIDPNTNBSUOFXTMBUFTU OFXTEJTDPWFSZGFBUVSFTIPXTVTFSTBSUJDMFTGSPNBDSPTT UIFQPMJUJDBMTQFDUSVN
"*ͷஅͰਓੜΛࠨӈ͞ΕΔࣄྫ • "*ͳͥͦͷஅΛԼ͔ͨ͠ʁ • அྙཧతɾಓಙతʹଥ͔ • ઃܭࣗମʹͳ͍ͷ͔ʁ
ۙͰٞΛݺΜͩྫ • ࠾༻ʹؔ͢Δ"* • ۚ༥ʹؔ͢Δ"* • ਓछʹؔ͢Δ"*
l"*z࣌Λ ੜ͖͍ͯ͘
ຊͷ·ͱΊ • ٕज़ֵ৽ͰۀքʹมԽ͕ى͖ͨ • σʔλ͔ΒՁΛग़͢Δ࣌ • େͳͷ͍ํ
དྷऀͷϝοηʔδ ʮ"*ʯͷൃల͕͞·͟·ʹͳΔதɺਓؒʹ͔͠Ͱ͖ͳ͍ͷ ʮఆٛʯ͢Δ͜ͱͩͱݸਓతʹࢥ͍ͬͯ·͢ɻٕज़ͰԿͰՄೳʹ ͳͬͨͱ͖ɺԿΛͬͯΑ͍͔ܾΊΔͷ͕େͰ͢ɻʮཧܥɾจܥʯ ͱ͍͏ΈʹनΘΕͳ͍ɺΑΓྖҬԣஅతͳ͕ٞඞཁͰɺதߴੜ ͷօ͞Μʹͥͻ෯͘ઓͯ͠Έͯ΄͍͠Ͱ͢ɻࣗʮχϡʔε ϝσΟΞºσʔλαΠΤϯεʯͷֻ͚߹ΘͤͰࣄΛ͍ͯ͠·͢ɻ