Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Autoencoderの実装 / Deep Learning Autoencoder
Search
Shotaro Ishihara
July 05, 2018
Programming
0
1.6k
Autoencoderの実装 / Deep Learning Autoencoder
Shotaro Ishihara
July 05, 2018
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
120
記者・編集者との協働:情報技術が変えるニュースメディア / Kaishi PU 2024
upura
0
69
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
240
マルチモーダル AI 実装の課題と解決策 / Developer X Summit
upura
0
270
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
810
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
upura
3
990
Quantifying Memorization and Detecting Training Data of Pre-trained Language Models using Japanese Newspaper
upura
0
66
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
500
第19回YANSシンポジウムスポンサー資料 / yans2024-nikkei
upura
0
72
Other Decks in Programming
See All in Programming
pylint custom ruleで始めるレビュー自動化
shogoujiie
0
130
『GO』アプリ バックエンドサーバのコスト削減
mot_techtalk
0
150
PHPカンファレンス名古屋2025 タスク分解の試行錯誤〜レビュー負荷を下げるために〜
soichi
1
560
第3回関東Kaggler会_AtCoderはKaggleの役に立つ
chettub
3
1.1k
SwiftUI Viewの責務分離
elmetal
PRO
2
250
PRレビューのお供にDanger
stoticdev
1
200
『品質』という言葉が嫌いな理由
korimu
0
180
Domain-Driven Transformation
hschwentner
2
1.9k
Pythonでもちょっとリッチな見た目のアプリを設計してみる
ueponx
1
590
Pulsar2 を雰囲気で使ってみよう
anoken
0
240
Djangoアプリケーション 運用のリアル 〜問題発生から可視化、最適化への道〜 #pyconshizu
kashewnuts
1
250
2024年のWebフロントエンドのふりかえりと2025年
sakito
3
260
Featured
See All Featured
The Invisible Side of Design
smashingmag
299
50k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
Facilitating Awesome Meetings
lara
52
6.2k
Navigating Team Friction
lara
183
15k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
The Cult of Friendly URLs
andyhume
78
6.2k
Fireside Chat
paigeccino
34
3.2k
Speed Design
sergeychernyshev
27
800
Code Reviewing Like a Champion
maltzj
521
39k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Unsuck your backbone
ammeep
669
57k
A better future with KSS
kneath
238
17k
Transcript
DL勉強会 Autoencoderの実装 2016/07/23 PSI B4 : 石原祥太郎 1
実行環境 2 Win10 + Anaconda(Python 2.7, 64 bit) + chainer
1.11.0 Data Set: mnist
概要 3 隠れ層(中間層)の数を変化させ、誤差の変化を算出 入力データ 出力データ wj i (1) wj i
(2)
4 条件 • 入力データ 28*28=784次元 • 活性化関数: ReLu • Dropout
: なし • ノイズ付加: なし • epoch: 30 • 誤差: 最小二乗法で算出 出力データ
5 結果 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0 200 400 600 800 1000 バッチごとの平均誤差 中間層の数(層) 中間層の数を変えた時の誤差の推移
6 中間層 n=100, DropOut: 無 上:入力データ 下:出力データ
7 中間層 n=1000, DropOut: 無 上:入力データ 下:出力データ
8 重み の可視化 wj i (1) y = w *
x = * m m n n (1)
9 重み の可視化 wj i (2) x = w *
y = * m n n (2) ^ m T T T
10 重み の可視化 wj i (1) n=1000, DropOut: 無
11 重み の可視化 wj i (1) n=1000, DropOut: 有 細かい部分が
取れるように なっている
参考 http://qiita.com/kenmatsu4/items/99d4a54d5a57405ecaf8 12 【ディープラーニング】 ChainerでAutoencoderを試して結果を可視化してみる。
13 中間層 n=100, DropOut: 有 上:入力データ 下:出力データ
14 中間層 n=1000, DropOut: 有 上:入力データ 下:出力データ