Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
コンピュータビジョン4.2節
Search
Takahiro Kawashima
June 13, 2018
Science
1
320
コンピュータビジョン4.2節
研究室のゼミで発表したRichard Szeliski 著,玉木徹ら訳の『コンピュータビジョン − アルゴリズムと応用』4.2節のスライド
Takahiro Kawashima
June 13, 2018
Tweet
Share
More Decks by Takahiro Kawashima
See All by Takahiro Kawashima
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
150
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
86
論文紹介:Precise Expressions for Random Projections
wasyro
0
390
ガウス過程入門
wasyro
0
490
論文紹介:Inter-domain Gaussian Processes
wasyro
0
160
論文紹介:Proximity Variational Inference (近接性変分推論)
wasyro
0
330
機械学習のための行列式点過程:概説
wasyro
0
1.7k
SOLVE-GP: ガウス過程の新しいスパース変分推論法
wasyro
1
1.3k
論文紹介:Stein Variational Gradient Descent
wasyro
0
1.3k
Other Decks in Science
See All in Science
証明支援系LEANに入門しよう
unaoya
0
1.2k
データベース02: データベースの概念
trycycle
PRO
2
750
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
270
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
530
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
180
KH Coderチュートリアル(スライド版)
koichih
1
41k
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
490
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
790
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
390
Lean4による汎化誤差評価の形式化
milano0017
1
230
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
250
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
160
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Side Projects
sachag
455
42k
What's in a price? How to price your products and services
michaelherold
246
12k
Embracing the Ebb and Flow
colly
86
4.7k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
Statistics for Hackers
jakevdp
799
220k
Navigating Team Friction
lara
187
15k
Transcript
4.2 અ Τοδ ౡوେ June 11, 2018 ిؾ௨৴େֶ ঙݚڀࣨ B4
࣍ 1. Τοδͷݕग़ 2. Τοδͷ࿈݁ 2
Τοδͷݕग़
Τοδͷݕग़ ྠֲઢͳͲͷΤοδ͖ΘΊͯଟ͘ͷใΛؚΉ ਓखʹΑΔΤοδݕग़ (ਤ 4.31) ˠ͜ΕΛύιίϯ༷ʹΒ͍ͤͨ 3
Τοδͷݕग़ ୯७ͳΤοδͷݕग़ํ๏ɿΤοδΛٸܹͳًมԽͱͯ͠ѻ͏ ˠًͷޯΛߟ͑Δ I(x) ΛϐΫηϧ x = (x, y)⊤ ্ͷًͱ͢Δͱɼًޯ
J(x) J(x) = ∇I(x) = ( ∂I ∂x , ∂I ∂y ) (x) (4.19) 4
Τοδͷݕग़ ϕΫτϧ J(x) ͷ • ͖ɿًؔͷ࠷ٸޯํ • େ͖͞ɿًؔͷมԽ߹͍ 5
Τοδͷݕग़ ߴपʹϊΠζ͕ଟ͍ ˠϩʔύεϑΟϧλͰฏԽ͔ͯ͠ΒޯΛܭࢉ ローパス フィルタ 6
Τοδͷݕग़ ϑΟϧλద༻ޙޯͷ͖͕ਖ਼͘͠อଘ͞Ε͍ͯͯ΄͍͠ ˠԁܗͷϑΟϧλ ՄೳͳԁܗϑΟϧλΨεϑΟϧλͷΈ (3.2 અɼਤ 3.14) ˠΤοδݕग़ͷͨΊͷϩʔύεϑΟϧλΨγΞϯ͕ఆ൪ 7
Τοδͷݕग़ ඍઢܗԋࢉͰ͋ΔͷͰଞͷϑΟϧλԋࢉͱՄ ΨεϑΟϧλؔΛ Gσ(x) = 1 2πσ2 exp ( −
x2 + y2 2σ2 ) ͱ͢Δ ฏԽޙͷը૾ͷޯΛ Jσ(x) ͱॻ͘ͱɼ Jσ(x) = ∇[Gσ(x) ∗ I(x)] = [∇Gσ(x)] ∗ I(x) (4.20) ͱͳΓɼΨεϑΟϧλؔͷඍͱͷͨͨΈࠐΈͰදݱͰ͖Δ 8
Τοδͷݕग़ ΨεϑΟϧλؔͷඍͷධՁ ∇Gσ(x) = ( ∂ ∂x , ∂ ∂y
)⊤ Gσ(x) = ( ∂ ∂x , ∂ ∂y )⊤ 1 2πσ2 exp ( − x2 + y2 2σ2 ) = 1 σ2 (−x, − y)⊤ 1 2πσ2 exp ( − x2 + y2 2σ2 ) ((4.21) ࣜͱ߹Θͳ͍͕ͨͿΜ͜ΕͰ͍͋ͬͯΔ) 9
Τοδͷݕग़ thinning ΤοδΛ 1 ըૉͷଠ͞Ͱදݱ͍ͨ͠߹͕ଟ͍ (ࡉઢԽ; thinning) (ը૾ [1] ΑΓ)
10
Τοδͷݕग़ thinning ʮΤοδʹରͯ͠ਨͳํͷޯڧ͕࠷େʹͳΔ࠲ඪʯΛٻ ΊΕΑ͍ ˠًͷ 2 ֊ඍ (ϥϓϥγΞϯ) Λߟ͑ΕΑͦ͞͏ͩ ͜ͷ
2 ֊ඍͷ Sσ(x) ɼ∇2 = ∇ · ∇(= div grad) ΑΓ Sσ(x) = ∇ · Jσ(x) = [∇2Gσ(x)] ∗ I(x) (4.22) 11
Τοδͷݕग़ thinning ΨεϑΟϧλͷϥϓϥγΞϯͷධՁ ∇2Gσ(x) = ∇ · [ 1 σ2
(−x, − y)⊤ 1 2πσ2 exp ( − x2 + y2 2σ2 )] = ∂ ∂x [ − x 2πσ4 exp ( − x2 + y2 2σ2 )] + ∂ ∂y [ − y 2πσ4 exp ( − x2 + y2 2σ2 )] = 1 2πσ2 ( x2 + y2 − 2σ2 σ4 ) exp ( − x2 + y2 2σ2 ) 12
Τοδͷݕग़ thinning ∇2Gσ(x) ͷΛແࢹˠ LoG(Laplacian of Gaussian) ϑΟϧλ LoG(x) =
( x2 + y2 − 2σ2 σ4 ) exp ( − x2 + y2 2σ2 ) 13
Τοδͷݕग़ thinning Sσ(x) ͷූ߸͕มԽ ˠ૬ରతͳ໌Δ͕͞มԽ Sσ(x) ͷθϩަࠩΛ୳ͤ Α͍ 14
Τοδͷݕग़ thinning sign(Sσ(xi)) ̸= sign(Sσ(xj)) ͱͳΔྡϐΫηϧ xi, xj ͓Αͼθ ϩަࠩ
xz Λ୳͢ Sσ(xi) ͱ Sσ(xj) ͱΛ݁Ϳઢ͕θϩͱަࠩ͢Δ xz ΛٻΊΔ 15
Τοδͷݕग़ thinning Sσ(xj) − Sσ(xi) xj − xi (xz −
xi) + Sσ(xi) = 0 ∴ xz = xiSσ(xj) + xjSσ(xi) Sσ(xj) + Sσ(xi) ͕ಘΒΕΔɽ3 ࣍ݩҎ্ͷ߹ಉ༷ʹ xz = xiSσ(xj) + xjSσ(xi) Sσ(xj) + Sσ(xi) (4.25) Ͱ͋Δ 16
Τοδͷݕग़ εέʔϧબͱϘέྔਪఆ LoG ʹదͳ σ ΛઃఆˠӶ͍/ಷ͍ΤοδΛநग़ (ਤ 4.32, (b), (c))
17
Τοδͷݕग़ εέʔϧબͱϘέྔਪఆ ͍ײͰΤοδΛͱΓ͍ͨͳΒʁ ˠεέʔϧεϖʔεͷΞϓϩʔν 1. ͍͔ͭ͘ͷ σ Λ༻ҙ 2. ͦΕͧΕͷ
σ ʹ͍ͭͯޯ ͱ 2 ֊ඍΛܭࢉ 3. ҆ఆʹΤοδΛݕग़Ͱ͖Δ ࠷খͷ σ ΛબɼͦΕΑΓ େ͖͍ σ Ͱݕग़͞ΕͨΤο δΛՃ 18
Τοδͷݕग़ εέʔϧબͱϘέྔਪఆ ͍ σ ͰΤοδΛநग़ (ਤ 4.32, (f)) 19
Τοδͷݕग़ Χϥʔը૾ͰͷΤοδݕग़ Χϥʔը૾ͰΤοδݕग़Λ͍ͨ͠ ୯७ʹًޯΛݟΔͱɼً৭ؒͷΤοδΛݕग़Ͱ͖ͳ͍ ղܾҊ 1ɿRGB ֤͝ͱʹًޯΛܭࢉ͢Δ • ֤৭Ͱූ߸ͷҟͳΔޯ͕ग़Δͱɼ୯७ͳ͠߹ΘͤͰ૬ ࡴ͕ى͜Δ
ղܾҊ 2ɿ֤ըૉͷपลͰہॴతͳ౷ܭྔΛ͍Ζ͍ΖௐΔ • ୯७ͳًɾ໌ɾ৭͚ͩͰͳ͘ɼςΫενϟͷมԽͳͲ ଊ͑ΒΕΔ 20
Τοδͷݕग़ ਤ 4.33ɽBGɿ໌ɼCGɿ৭ɼTGɿςΫενϟ 21
Τοδͷ࿈݁
Τοδͷ࿈݁ நग़͞ΕͨΤοδΛ࿈݁ͯ͠Ұܨ͗ʹ͍ͨ͠ thinning ͞ΕͨΤοδͷըૉใΛ͍࣋ͬͯΔͱָ ˠ͍ۙΛ୳ࡧͯ͠ܨ͛Α͍ ΤοδΛ࿈݁͢ΔͱΑΓѹॖͨ͠දݱ͕ՄೳʹͳΔ 22
Τοδͷ࿈݁ νΣΠϯίʔυ 8 ͭͷํ֯ (N, NE, E, SE, S, SW,
W, NW) Λ 3bit ͰίʔυԽ (ਤ 4.34) 23
Τοδͷ࿈݁ νΣΠϯίʔυ νΣΠϯίʔυͰͷΤϯίʔυޙɼϥϯϨϯάεූ߸Ͱ͞Βʹѹ ॖͰ͖Δ ϥϯϨϯάεූ߸ ܁Γฦ͠ͷจࣈΛͦͷճͰදݱ AAAABBBCCCCC ˠ A4B3C5 24
Τοδͷ࿈݁ arc-length parameterization ʮހʯͷ͞ͱΤοδ࠲ඪΛ༻͍ͯදݱ (ਤ 4.35) 1. x0 = (1,
0.5)⊤ ͔Βελʔτ 2. s = 0 ʹ x0 ͷ࠲ඪΛͦΕͧΕϓϩοτ 3. x1 = (2, 0.5)⊤ 4. s = ∥x1 − x0∥ = 1 ʹ x1 ͷ࠲ඪΛͦΕͧΕϓϩοτ 5. ࢝ʹΔ·Ͱ܁Γฦ͢ 25
Τοδͷ࿈݁ arc-length parameterization Q. Կ͕͏Ε͍͠ͷ͔ʁ A. ϚονϯάฏԽͳͲͷॲཧ͕༰қʹͳΔ ܗঢ়ͷࣅͨΤοδΛߟ͑Δ (ਤ 4.36)
26
Τοδͷ࿈݁ arc-length parameterization 1. Τοδͷ࠲ඪͷฏۉ ¯ x0 = ∫ S
x(s)ds Λݮࢉ 2. s Λ 0 ∼ S ͔Β 0 ∼ 1 ʹਖ਼نԽ 3. ͦΕͧΕʹ͍ͭͯϑʔϦΤม 27
Τοδͷ࿈݁ arc-length parameterization ͱͷΤοδಉ͕࢜εέʔϦϯάͱճసͷҧ͍͔͠ͳ͍ ˠϑʔϦΤมͷ݁ՌڧͱҐ૬ͷζϨ͔͠ҟͳΒͳ͍ͣ (։͕࢝ҟͳΔͱઢܗͷҐ૬ͷζϨग़Δ) 28
Τοδͷ࿈݁ arc-length parameterization ࢄԽ࣌ʹੜ͡ΔϊΠζͷฏԽʹ༗ޮ ͔͠͠ී௨ʹฏԽϑΟϧλΛ͔͚Δͱॖখͯ͠ฏԽ͞ΕΔ ਤ 4.37(a), ԁͷܘ͕ॖখ͍ͯ͠Δ 29
Τοδͷ࿈݁ arc-length parameterization 2 ֊ඍʹجͮ͘Φϑηοτ߲Λ͔͢ɼΑΓେ͖ͳ (ͦ͢ͷ ͍ʁ) ฏԽϑΟϧλΛ༻͍Δ ਤ 4.37(b)
30
·ͱΊ • άϨʔεέʔϧը૾ͰًޯͰΤοδΛݕग़ ϊΠζআڈಉ࣌ʹߦ͏ͨΊʹΨγΞϯϑΟϧλͷ 1 ֊ඍ ͱͨͨΈࠐΉ • thinning ͍ͨ͠߹
LoG ϑΟϧλΛ͔͚ͯθϩަࠩΛٻ ΊΔ • Χϥʔը૾ͷΤοδݕग़໌ɾ৭ɾςΫενϟͳͲͷ౷ܭ ྔ͕༗ޮ • thinning ͞ΕͨΤοδͷ࿈݁νΣΠϯίʔυ arc-length parameterization ͕༗ޮ • arc-length parameterization ޙϚονϯάϊΠζআڈΛ͠ ͍͢ 31
References I [1] R. Rao. Image sampling, pyramids, and edge
detection. https://courses.cs.washington.edu/courses/cse455/ 09wi/Lects/lect3.pdf, 2009.