Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
コンピュータビジョン4.2節
Search
Takahiro Kawashima
June 13, 2018
Science
1
350
コンピュータビジョン4.2節
研究室のゼミで発表したRichard Szeliski 著,玉木徹ら訳の『コンピュータビジョン − アルゴリズムと応用』4.2節のスライド
Takahiro Kawashima
June 13, 2018
Tweet
Share
More Decks by Takahiro Kawashima
See All by Takahiro Kawashima
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
330
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
220
論文紹介:Precise Expressions for Random Projections
wasyro
1
540
ガウス過程入門
wasyro
0
970
論文紹介:Inter-domain Gaussian Processes
wasyro
0
190
論文紹介:Proximity Variational Inference (近接性変分推論)
wasyro
0
370
機械学習のための行列式点過程:概説
wasyro
0
2k
SOLVE-GP: ガウス過程の新しいスパース変分推論法
wasyro
1
1.5k
論文紹介:Stein Variational Gradient Descent
wasyro
0
1.9k
Other Decks in Science
See All in Science
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
データマイニング - コミュニティ発見
trycycle
PRO
0
190
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
350
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
570
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
130
HajimetenoLT vol.17
hashimoto_kei
1
160
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
160
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
460
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
240
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
150
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
440
Featured
See All Featured
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
130
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
220
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
100
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
59
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Fireside Chat
paigeccino
41
3.8k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
A better future with KSS
kneath
240
18k
A designer walks into a library…
pauljervisheath
210
24k
Transcript
4.2 અ Τοδ ౡوେ June 11, 2018 ిؾ௨৴େֶ ঙݚڀࣨ B4
࣍ 1. Τοδͷݕग़ 2. Τοδͷ࿈݁ 2
Τοδͷݕग़
Τοδͷݕग़ ྠֲઢͳͲͷΤοδ͖ΘΊͯଟ͘ͷใΛؚΉ ਓखʹΑΔΤοδݕग़ (ਤ 4.31) ˠ͜ΕΛύιίϯ༷ʹΒ͍ͤͨ 3
Τοδͷݕग़ ୯७ͳΤοδͷݕग़ํ๏ɿΤοδΛٸܹͳًมԽͱͯ͠ѻ͏ ˠًͷޯΛߟ͑Δ I(x) ΛϐΫηϧ x = (x, y)⊤ ্ͷًͱ͢Δͱɼًޯ
J(x) J(x) = ∇I(x) = ( ∂I ∂x , ∂I ∂y ) (x) (4.19) 4
Τοδͷݕग़ ϕΫτϧ J(x) ͷ • ͖ɿًؔͷ࠷ٸޯํ • େ͖͞ɿًؔͷมԽ߹͍ 5
Τοδͷݕग़ ߴपʹϊΠζ͕ଟ͍ ˠϩʔύεϑΟϧλͰฏԽ͔ͯ͠ΒޯΛܭࢉ ローパス フィルタ 6
Τοδͷݕग़ ϑΟϧλద༻ޙޯͷ͖͕ਖ਼͘͠อଘ͞Ε͍ͯͯ΄͍͠ ˠԁܗͷϑΟϧλ ՄೳͳԁܗϑΟϧλΨεϑΟϧλͷΈ (3.2 અɼਤ 3.14) ˠΤοδݕग़ͷͨΊͷϩʔύεϑΟϧλΨγΞϯ͕ఆ൪ 7
Τοδͷݕग़ ඍઢܗԋࢉͰ͋ΔͷͰଞͷϑΟϧλԋࢉͱՄ ΨεϑΟϧλؔΛ Gσ(x) = 1 2πσ2 exp ( −
x2 + y2 2σ2 ) ͱ͢Δ ฏԽޙͷը૾ͷޯΛ Jσ(x) ͱॻ͘ͱɼ Jσ(x) = ∇[Gσ(x) ∗ I(x)] = [∇Gσ(x)] ∗ I(x) (4.20) ͱͳΓɼΨεϑΟϧλؔͷඍͱͷͨͨΈࠐΈͰදݱͰ͖Δ 8
Τοδͷݕग़ ΨεϑΟϧλؔͷඍͷධՁ ∇Gσ(x) = ( ∂ ∂x , ∂ ∂y
)⊤ Gσ(x) = ( ∂ ∂x , ∂ ∂y )⊤ 1 2πσ2 exp ( − x2 + y2 2σ2 ) = 1 σ2 (−x, − y)⊤ 1 2πσ2 exp ( − x2 + y2 2σ2 ) ((4.21) ࣜͱ߹Θͳ͍͕ͨͿΜ͜ΕͰ͍͋ͬͯΔ) 9
Τοδͷݕग़ thinning ΤοδΛ 1 ըૉͷଠ͞Ͱදݱ͍ͨ͠߹͕ଟ͍ (ࡉઢԽ; thinning) (ը૾ [1] ΑΓ)
10
Τοδͷݕग़ thinning ʮΤοδʹରͯ͠ਨͳํͷޯڧ͕࠷େʹͳΔ࠲ඪʯΛٻ ΊΕΑ͍ ˠًͷ 2 ֊ඍ (ϥϓϥγΞϯ) Λߟ͑ΕΑͦ͞͏ͩ ͜ͷ
2 ֊ඍͷ Sσ(x) ɼ∇2 = ∇ · ∇(= div grad) ΑΓ Sσ(x) = ∇ · Jσ(x) = [∇2Gσ(x)] ∗ I(x) (4.22) 11
Τοδͷݕग़ thinning ΨεϑΟϧλͷϥϓϥγΞϯͷධՁ ∇2Gσ(x) = ∇ · [ 1 σ2
(−x, − y)⊤ 1 2πσ2 exp ( − x2 + y2 2σ2 )] = ∂ ∂x [ − x 2πσ4 exp ( − x2 + y2 2σ2 )] + ∂ ∂y [ − y 2πσ4 exp ( − x2 + y2 2σ2 )] = 1 2πσ2 ( x2 + y2 − 2σ2 σ4 ) exp ( − x2 + y2 2σ2 ) 12
Τοδͷݕग़ thinning ∇2Gσ(x) ͷΛແࢹˠ LoG(Laplacian of Gaussian) ϑΟϧλ LoG(x) =
( x2 + y2 − 2σ2 σ4 ) exp ( − x2 + y2 2σ2 ) 13
Τοδͷݕग़ thinning Sσ(x) ͷූ߸͕มԽ ˠ૬ରతͳ໌Δ͕͞มԽ Sσ(x) ͷθϩަࠩΛ୳ͤ Α͍ 14
Τοδͷݕग़ thinning sign(Sσ(xi)) ̸= sign(Sσ(xj)) ͱͳΔྡϐΫηϧ xi, xj ͓Αͼθ ϩަࠩ
xz Λ୳͢ Sσ(xi) ͱ Sσ(xj) ͱΛ݁Ϳઢ͕θϩͱަࠩ͢Δ xz ΛٻΊΔ 15
Τοδͷݕग़ thinning Sσ(xj) − Sσ(xi) xj − xi (xz −
xi) + Sσ(xi) = 0 ∴ xz = xiSσ(xj) + xjSσ(xi) Sσ(xj) + Sσ(xi) ͕ಘΒΕΔɽ3 ࣍ݩҎ্ͷ߹ಉ༷ʹ xz = xiSσ(xj) + xjSσ(xi) Sσ(xj) + Sσ(xi) (4.25) Ͱ͋Δ 16
Τοδͷݕग़ εέʔϧબͱϘέྔਪఆ LoG ʹదͳ σ ΛઃఆˠӶ͍/ಷ͍ΤοδΛநग़ (ਤ 4.32, (b), (c))
17
Τοδͷݕग़ εέʔϧબͱϘέྔਪఆ ͍ײͰΤοδΛͱΓ͍ͨͳΒʁ ˠεέʔϧεϖʔεͷΞϓϩʔν 1. ͍͔ͭ͘ͷ σ Λ༻ҙ 2. ͦΕͧΕͷ
σ ʹ͍ͭͯޯ ͱ 2 ֊ඍΛܭࢉ 3. ҆ఆʹΤοδΛݕग़Ͱ͖Δ ࠷খͷ σ ΛબɼͦΕΑΓ େ͖͍ σ Ͱݕग़͞ΕͨΤο δΛՃ 18
Τοδͷݕग़ εέʔϧબͱϘέྔਪఆ ͍ σ ͰΤοδΛநग़ (ਤ 4.32, (f)) 19
Τοδͷݕग़ Χϥʔը૾ͰͷΤοδݕग़ Χϥʔը૾ͰΤοδݕग़Λ͍ͨ͠ ୯७ʹًޯΛݟΔͱɼً৭ؒͷΤοδΛݕग़Ͱ͖ͳ͍ ղܾҊ 1ɿRGB ֤͝ͱʹًޯΛܭࢉ͢Δ • ֤৭Ͱූ߸ͷҟͳΔޯ͕ग़Δͱɼ୯७ͳ͠߹ΘͤͰ૬ ࡴ͕ى͜Δ
ղܾҊ 2ɿ֤ըૉͷपลͰہॴతͳ౷ܭྔΛ͍Ζ͍ΖௐΔ • ୯७ͳًɾ໌ɾ৭͚ͩͰͳ͘ɼςΫενϟͷมԽͳͲ ଊ͑ΒΕΔ 20
Τοδͷݕग़ ਤ 4.33ɽBGɿ໌ɼCGɿ৭ɼTGɿςΫενϟ 21
Τοδͷ࿈݁
Τοδͷ࿈݁ நग़͞ΕͨΤοδΛ࿈݁ͯ͠Ұܨ͗ʹ͍ͨ͠ thinning ͞ΕͨΤοδͷըૉใΛ͍࣋ͬͯΔͱָ ˠ͍ۙΛ୳ࡧͯ͠ܨ͛Α͍ ΤοδΛ࿈݁͢ΔͱΑΓѹॖͨ͠දݱ͕ՄೳʹͳΔ 22
Τοδͷ࿈݁ νΣΠϯίʔυ 8 ͭͷํ֯ (N, NE, E, SE, S, SW,
W, NW) Λ 3bit ͰίʔυԽ (ਤ 4.34) 23
Τοδͷ࿈݁ νΣΠϯίʔυ νΣΠϯίʔυͰͷΤϯίʔυޙɼϥϯϨϯάεූ߸Ͱ͞Βʹѹ ॖͰ͖Δ ϥϯϨϯάεූ߸ ܁Γฦ͠ͷจࣈΛͦͷճͰදݱ AAAABBBCCCCC ˠ A4B3C5 24
Τοδͷ࿈݁ arc-length parameterization ʮހʯͷ͞ͱΤοδ࠲ඪΛ༻͍ͯදݱ (ਤ 4.35) 1. x0 = (1,
0.5)⊤ ͔Βελʔτ 2. s = 0 ʹ x0 ͷ࠲ඪΛͦΕͧΕϓϩοτ 3. x1 = (2, 0.5)⊤ 4. s = ∥x1 − x0∥ = 1 ʹ x1 ͷ࠲ඪΛͦΕͧΕϓϩοτ 5. ࢝ʹΔ·Ͱ܁Γฦ͢ 25
Τοδͷ࿈݁ arc-length parameterization Q. Կ͕͏Ε͍͠ͷ͔ʁ A. ϚονϯάฏԽͳͲͷॲཧ͕༰қʹͳΔ ܗঢ়ͷࣅͨΤοδΛߟ͑Δ (ਤ 4.36)
26
Τοδͷ࿈݁ arc-length parameterization 1. Τοδͷ࠲ඪͷฏۉ ¯ x0 = ∫ S
x(s)ds Λݮࢉ 2. s Λ 0 ∼ S ͔Β 0 ∼ 1 ʹਖ਼نԽ 3. ͦΕͧΕʹ͍ͭͯϑʔϦΤม 27
Τοδͷ࿈݁ arc-length parameterization ͱͷΤοδಉ͕࢜εέʔϦϯάͱճసͷҧ͍͔͠ͳ͍ ˠϑʔϦΤมͷ݁ՌڧͱҐ૬ͷζϨ͔͠ҟͳΒͳ͍ͣ (։͕࢝ҟͳΔͱઢܗͷҐ૬ͷζϨग़Δ) 28
Τοδͷ࿈݁ arc-length parameterization ࢄԽ࣌ʹੜ͡ΔϊΠζͷฏԽʹ༗ޮ ͔͠͠ී௨ʹฏԽϑΟϧλΛ͔͚Δͱॖখͯ͠ฏԽ͞ΕΔ ਤ 4.37(a), ԁͷܘ͕ॖখ͍ͯ͠Δ 29
Τοδͷ࿈݁ arc-length parameterization 2 ֊ඍʹجͮ͘Φϑηοτ߲Λ͔͢ɼΑΓେ͖ͳ (ͦ͢ͷ ͍ʁ) ฏԽϑΟϧλΛ༻͍Δ ਤ 4.37(b)
30
·ͱΊ • άϨʔεέʔϧը૾ͰًޯͰΤοδΛݕग़ ϊΠζআڈಉ࣌ʹߦ͏ͨΊʹΨγΞϯϑΟϧλͷ 1 ֊ඍ ͱͨͨΈࠐΉ • thinning ͍ͨ͠߹
LoG ϑΟϧλΛ͔͚ͯθϩަࠩΛٻ ΊΔ • Χϥʔը૾ͷΤοδݕग़໌ɾ৭ɾςΫενϟͳͲͷ౷ܭ ྔ͕༗ޮ • thinning ͞ΕͨΤοδͷ࿈݁νΣΠϯίʔυ arc-length parameterization ͕༗ޮ • arc-length parameterization ޙϚονϯάϊΠζআڈΛ͠ ͍͢ 31
References I [1] R. Rao. Image sampling, pyramids, and edge
detection. https://courses.cs.washington.edu/courses/cse455/ 09wi/Lects/lect3.pdf, 2009.