z on θ is “cut” corresponding independence sampler 1. z ∼ N(0, 1) 2. θ|z, θt−1 ∼ MH(N(z, 1); θt−1) mu.new <- rnorm(1, mean=0, sd=SD) R <- (dnorm(mu, mean=0, sd=SD)*dnorm(z, mean=mu.new (dnorm(mu.new, mean=0, sd=SD)*dnorm(z, mean=mu, ifelse(runif(1) < R, mu.new, mu) i.e. 1. zt ∼ N(0, 1) 2. propose η ∼ N(1, 1) 3. compute ρ = ϕ(η − zt)/ϕ(θt−1 − zt) ϕ(η − 1)/ϕ(θt−1 − 1)