Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計の基礎12 重回帰
Search
xjorv
February 03, 2021
Education
0
110
統計の基礎12 重回帰
統計の基礎12では、1つの従属変数を多数の説明変数で説明する場合の線形回帰の方法である、重回帰について説明します。
xjorv
February 03, 2021
Tweet
Share
More Decks by xjorv
See All by xjorv
コンパートメントモデル
xjorv
3
5.7k
コンパートメントモデルをStanで解く
xjorv
0
450
生物学的同等性試験 検出力の計算法
xjorv
0
3.5k
生物学的同等性試験ガイドライン 同等性パラメータの計算方法
xjorv
0
6.3k
粉体特性2
xjorv
0
2.5k
粉体特性1
xjorv
0
2.9k
皮膜5
xjorv
0
2.3k
皮膜4
xjorv
0
2.2k
皮膜3
xjorv
0
2.2k
Other Decks in Education
See All in Education
新卒研修に仕掛ける 学びのサイクル / Implementing Learning Cycles in New Graduate Training
takashi_toyosaki
1
230
データで見る赤ちゃんの成長
syuchimu
0
280
Course Review - Lecture 12 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.8k
2026 g0v 零時政府年會啟動提案 / g0v Summit 2026 Kickstart
rschiang
0
280
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
120
Online Privacy
takahitosakamoto
0
110
20250625_なんでもCopilot 一年の振り返り
ponponmikankan
0
360
ROSConJP 2025 発表スライド
f0reacharr
0
220
2025年度春学期 統計学 第15回 分布についての仮説を検証する ー 仮説検定(2) (2025. 7. 17)
akiraasano
PRO
0
110
2025年度春学期 統計学 第10回 分布の推測とは ー 標本調査,度数分布と確率分布 (2025. 6. 12)
akiraasano
PRO
0
220
【品女100周年企画】Pitch Deck
shinagawajoshigakuin_100th
0
6k
アントレプレナーシップ教育 ~ 自分で自分の幸せを決めるために ~
yoshizaki
0
170
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
96
6.2k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Automating Front-end Workflow
addyosmani
1370
200k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Building Applications with DynamoDB
mza
96
6.6k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Into the Great Unknown - MozCon
thekraken
40
2k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Thoughts on Productivity
jonyablonski
70
4.8k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Documentation Writing (for coders)
carmenintech
74
5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Transcript
統計の基礎12 重回帰 2021/1/13 Ver. 1.0
重回帰とは? 2つ以上の説明変数により、従属変数が説明される回帰のこと 血圧 年齢 体重 身長 160 54 88 177
119 30 61 169 122 41 60 184 143 54 58 174 139 34 85 174 127 46 60 183 119 17 80 177 141 45 72 147 177 62 96 169 110 29 71 166 171 58 92 160 142 68 63 174 146 42 79 170 131 47 57 160 169 56 89 165 139 25 91 180 163 58 81 165 128 48 53 176 154 56 73 173 128 43 55 161 • 血圧が年齢、体重、身長で説明できるか どうか調べる • 血圧が従属変数 • 年齢・体重・身長が説明変数
グラフにしてみる 血圧 年齢 体重 身長 • 体重・年齢とは正の相関がありそう • 身長とは負の相関がありそう
回帰の結果 単回帰と同じく最小二乗法で求める 血圧=0.96×年齢+0.87×体重-0.13×身長+54.9
p値の意味 単回帰と同じく、傾きが0とみなせる確率を示す • 年齢と体重の傾きは0ではない • 身長の傾きは0でないとは言えない • 計算方法はt検定
重回帰の条件 各説明変数が独立の場合、結果の信頼性が高くなる • 説明変数間の相関が高いと係数の計算が怪しくなる • 傾きが小さい説明変数をたくさん含むと、過学習になる 0 20 40 60
80 100 120 0 20 40 60 80 0 20 40 60 80 100 120 0 20 40 60 80 直線回帰 変数が6つの多項式回帰 変数が増えると回帰が一般性を失いやすくなる(過学習)
正規化 データの単位/桁が大きく違う場合には、正規化を行う 正規化: データを平均0、標準偏差1の分布に補正すること 血圧 年齢 体重 身長 0.9723215 0.6259932
1.049394 0.7569833 -1.170968 -1.173269 -0.865041 -0.133585 -1.014142 -0.348607 -0.935946 1.5362309 0.0836406 0.6259932 -1.077756 0.4230201 -0.125461 -0.873392 0.836679 0.4230201 -0.752765 0.0262392 -0.935946 1.4249098 -1.170968 -2.147869 0.482154 0.7569833 -0.02091 -0.04873 -0.085086 -2.582649 1.8610024 1.2257471 1.616634 -0.133585 -1.641446 -1.248238 -0.155991 -0.467549 1.5473503 0.9258701 1.333014 -1.135475 0.0313652 1.6755626 -0.723231 0.4230201 0.2404666 -0.273638 0.411249 -0.022264 -0.543664 0.1012085 -1.148661 -1.135475 1.4427996 0.7759317 1.120299 -0.57887 -0.125461 -1.548115 1.262109 1.0909465 1.1291475 0.9258701 0.553059 -0.57887 -0.70049 0.1761777 -1.432281 0.6456622 0.6586694 0.7759317 -0.014181 0.311699 -0.70049 -0.198668 -1.290471 -1.024154 平均 5E-10 0 0 1E-09 標準偏差 1 1 1 1 血圧 年齢 体重 身長 160 54 88 177 119 30 61 169 122 41 60 184 143 54 58 174 139 34 85 174 127 46 60 183 119 17 80 177 141 45 72 147 177 62 96 169 110 29 71 166 171 58 92 160 142 68 63 174 146 42 79 170 131 47 57 160 169 56 89 165 139 25 91 180 163 58 81 165 128 48 53 176 154 56 73 173 128 43 55 161 正規化
まとめ • 1つの従属変数を多数の説明変数で説明するモデルを重回帰 と呼ぶ • 重回帰は単回帰と同じく、最小二乗法で計算する • 重回帰の傾きにはt検定が適用される • 説明変数が多すぎると、過学習が起きる
• データの単位や桁によっては、データの正規化を行う