Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
畳み込みニューラルネットワーク
Search
youichiro
March 29, 2017
Technology
1
540
畳み込みニューラルネットワーク
長岡技術科学大学
自然言語処理研究室
B3ゼミ発表(第9回)
youichiro
March 29, 2017
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.4k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
77
Multi-Agent Dual Learning
youichiro
1
150
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
100
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
120
勉強勉強会
youichiro
0
79
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
170
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
140
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
190
Other Decks in Technology
See All in Technology
データモデルYANGの処理系を再発明した話
tjmtrhs
0
380
4th place solution Eedi - Mining Misconceptions in Mathematics
rist
0
150
2025/3/1 公共交通オープンデータデイ2025
morohoshi
0
120
Pwned Labsのすゝめ
ken5scal
2
580
Log Analytics を使った実際の運用 - Sansan Data Hub での取り組み
sansantech
PRO
0
150
Охота на косуль у древних
ashapiro
0
130
Oracle Database Technology Night #87-1 : Exadata Database Service on Exascale Infrastructure(ExaDB-XS)サービス詳細
oracle4engineer
PRO
1
230
フォーイット_エンジニア向け会社紹介資料_Forit_Company_Profile.pdf
forit_tech
1
1.7k
Platform Engineeringで クラウドの「楽しくない」を解消しよう
jacopen
4
260
貧民的プログラミングのすすめ
kakehashi
PRO
2
210
Global Databaseで実現するマルチリージョン自動切替とBlue/Greenデプロイ
j2yano
0
180
どうすると生き残れないのか/how-not-to-survive
hanhan1978
2
1.1k
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
660
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Embracing the Ebb and Flow
colly
84
4.6k
Code Review Best Practice
trishagee
67
18k
Docker and Python
trallard
44
3.3k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
Transcript
畳み込みニューラルネットワーク 平成29年3月30日 長岡技術科学大学 自然言語処理研究室 小川耀一朗
発表内容 l 畳み込みニューラルネットワーク (Convolutional Neural Networks : CNN) l 畳み込みとは
l ニューラルネットの構造 l プーリング層 l 自然言語処理への応用 2/24
畳み込みニューラルネットワーク ある図形が◦か×かを判定する問題 通常のニューラルネットでは… 画像の1ピクセルを1つの入力とする 10×10の画像 → 100ベクトル 3/24
畳み込みニューラルネットワーク これでは、少し位置がずれていたりすると判定に大 きな影響が出る ある程度の大きさの領域をまとめて入力 → 「右上から左下にかけて黒」という傾向を捉える 4/24
畳み込みニューラルネットワーク これでは、少し位置がずれていたりすると判定に大 きな影響が出る ある程度の大きさの領域をまとめて入力 5/24 フィルタ
畳み込みとは 画像の各要素は0が黒、1が白(一般的には0〜255) 6/24 画像 フィルタ
畳み込みとは 画像の値とフィルタの値を要素毎に掛け合わせ、そ れらの値を合計 7/24 画像 フィルタ 畳み込み(内積) 特徴量
畳み込みとは 画像の値とフィルタの値を要素毎に掛け合わせ、そ れらの値を合計 8/24 画像 フィルタ
畳み込みとは 画像の値とフィルタの値を要素毎に掛け合わせ、そ れらの値を合計 9/24 画像 フィルタ
畳み込みとは 画像の値とフィルタの値を要素毎に掛け合わせ、そ れらの値を合計 10/24 画像 フィルタ
畳み込みとは 画像の値とフィルタの値を要素毎に掛け合わせ、そ れらの値を合計 11/24 画像 フィルタ 畳み込み行列 ↑全体の畳み込み
畳み込みとは ニューラルネットのイメージ 12/24
畳み込みニューラルネットワーク フィルタによって1ピクセルだけ出力する処理 • 入力となる数値の並び(画像の一部分)がある • この数値の並びにそれぞれフィルタの値をかける • かけ算の各結果をすべて足し合わせる 13/24
畳み込みニューラルネットワーク フィルタによって1ピクセルだけ出力する処理 • 入力となる数値の並び(画像の一部分)がある • この数値の並びにそれぞれフィルタの値をかける • かけ算の各結果をすべて足し合わせる ニューラルネットの1ノードの働き •
入力となる数値の並びがある • この数値の並びにそれぞれ重みの値をかける • かけ算の各結果をすべて足し合わせる 14/24
畳み込みニューラルネットワーク フィルタによって1ピクセルだけ出力する処理 • 入力となる数値の並び(画像の一部分)がある • この数値の並びにそれぞれフィルタの値をかける • かけ算の各結果をすべて足し合わせる ニューラルネットの1ノードの働き •
入力となる数値の並びがある • この数値の並びにそれぞれ重みの値をかける • かけ算の各結果をすべて足し合わせる 15/24 フィルタの値を学習によって更新していく
構造 16/24
構造 畳み込み層 1層で複数のフィルタを持っている フィルタの数だけ畳み込み行列が生成 配列の各値には活性化関数をそれぞれ適用 17/24
構造 プーリング層 畳み込み行列の縮小を行い、有効な値だけ残す 18/24
プーリング層 最大プーリング(Max Pooling): 各領域内の最大値をとって圧縮を行う方法 19/24
プーリング層 特徴 l 出力される行列が固定サイズになる 1000個のフィルタがあってそれぞれ最大プー リングを適用 →入力画像のサイズやフィルタのサイズに関 わらず出力は1000次元 l 位置と回転に不変性を与える
ある領域について、微妙なピクセルの違いが あっても、その差異を吸収する 20/24
構造 全結合層 最後のプーリング層の出力をすべて入力 2次元配列(3次元でも可)が1次元配列になる 出力層で正解ラベルと対応させる 21/24
自然言語処理への応用 CNNの特徴 l 入力をベクトル表現(word2vecなど)された文書 にすればNLPに応用できる l 感情分析、スパム検出、カテゴリ分類などの分 類問題が得意 l 畳み込みとプーリングにより局所的な位置情報
が失われるため、品詞タグ付けや固有表現抽出な どでは難しい 22/24
自然言語処理への応用 文の分類 文を単語ベクトル列として表現し、CNNを用いて 特徴抽出・分類 Convolutional Neural Networks for Sentence Classification(2014/08)
23/24
自然言語処理への応用 言語モデル 言語モデルのタスクでLSTM同等以上の精度を 出した 計算効率がLSTMより20倍程度改善された Language Modeling with Gated Convolutional
Networks(2016/12) →自然言語処理の問題に対してもCNNが適用され 始め、高い精度を出している 24/24
発表した内容 l 畳み込みニューラルネットワーク l 畳み込みとは l ニューラルネットの構造 l プーリング層 l
自然言語処理への応用 参考文献 u自然言語処理における畳み込みニューラルネットワークを理解する (http://tkengo.github.io/blog/2016/03/11/understanding-convolutional- neural-networks-for-nlp/) uConvolutional Neural Networkとは何なのか (http://qiita.com/icoxfog417/items/5fd55fad152231d706c2) u高卒でもわかる機械学習 (7) 畳み込みニューラルネット その1 (http://hokuts.com/2016/12/13/cnn1/) u自然言語処理における畳み込みニューラルネットワークを用いたモデ ル (http://qiita.com/Hironsan/items/63d255fd038acbcdf95b) 25/24