and Benjamin Van Durme Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 189–195, 2017 ⽂献紹介(2018/05/09) ⻑岡技術科学⼤学 ⾃然⾔語処理研究室 ⼩川 耀⼀朗 1
{on, about, from, for, of, to, at, in, with, by, Φ} l 動詞の活⽤ {VB(P|Z|G|D|N)} n それぞれのn-gram⾔語モデルスコアを⽐較して最も良い候補を選択 l KenLMでEnglish Gigawordの5-gram⾔語モデルを構築 8 置換・挿⼊の候補セット
(TLE) (Berzak et al., 2016) l 5,124⽂に係り受け情報と品詞情報を付与 n 訓練データ l Annotated Gigaword (Napoles et al., 2012) n 評価 l ⽂法性を1から4のスコアで評価 (Heilman et al., 2014) 11
2010. An efficient algorithm for easy-first non-directional dependency parsing. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, Los Angeles, California, pages 742–750. http://www.aclweb.org/anthology/N10-1115 u Training parser Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pages 1–8. http://www.aclweb.org/anthology/W02-1001 u Generating errors Jennifer Foster and Oistein Andersen. 2009. Generrate: Generating errors for use in grammatical error detection. In Proceedings of the Fourth Work-shop on Innovative Use of NLP for Building Educational Applications. Association for Computational Linguistics, Boulder, Colorado, pages 82–90. http://www.aclweb.org/anthology/W09-2112.pdf u Grammaticality score Michael Heilman, Aoife Cahill, Nitin Madnani, Melissa Lopez, Matthew Mulholland, and Joel Tetreault. 2014. Predicting grammaticality on an ordinal scale. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, Baltimore, Maryland, pages 174–180. http://www.aclweb.org/anthology/P14-2029 14