Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[輪読]時系列解析入門 5章
Search
ysekky
April 08, 2015
Science
1
310
[輪読]時系列解析入門 5章
ysekky
April 08, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.6k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
750
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.7k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.4k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Science
See All in Science
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
2k
240510 COGNAC LabChat
kazh
0
180
ウェーブレットおきもち講座
aikiriao
1
830
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
270
小杉考司(専修大学)
kosugitti
2
610
ベイズ最適化をゼロから
brainpadpr
2
1.1k
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
610
SciPyDataJapan 2025
schwalbe10
0
140
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
310
Planted Clique Conjectures are Equivalent
nobushimi
0
120
As We May Interact: Challenges and Opportunities for Next-Generation Human-Information Interaction
signer
PRO
0
380
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
460
Featured
See All Featured
Done Done
chrislema
182
16k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
A Tale of Four Properties
chriscoyier
158
23k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Documentation Writing (for coders)
carmenintech
67
4.6k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Scaling GitHub
holman
459
140k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
Into the Great Unknown - MozCon
thekraken
35
1.6k
Transcript
時系列解析入門 5章 最小2乗法 Yoshifumi Seki (Gunosy Inc) 2015.04.07
5.1 回帰モデルと最小2乗法 • ynを目的変数, xn1,..,xnmを説明変数とすると き以下を回帰モデルという • 行列を用いて以下のように表現できる
5.1 回帰モデルと最小2乗法 • 回帰モデルの対数尤度を最大にする回帰係 数aを求めるためには以下を最小化すればよ い • これを最小2乗法と呼ぶ
5.3 AICによる次数選択 • 次数: 説明変数の個数m • AICによって説明変数の個数を選択するため にはj個の変数を用いた回帰モデルのAIC_jを 求め最小となるjを選択すればよい
5.4 データの追加と分割処理 • 全データメモリに乗せると計算は辛い • 一部のデータから求められていれば,データ を追加してパラメータを更新することは容易で ある
5.5 AICによる変数選択 • 5.3節でみたような形は説明変数を採用する 優先順位が決められているケース • 本節では優先順位も決める – 説明変数の優先順位のインデックスベクトル
• 上記のモデルから最適なモデルを選択する – 個のモデルができる
None