Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[輪読]時系列解析入門 5章
Search
ysekky
April 08, 2015
Science
1
320
[輪読]時系列解析入門 5章
ysekky
April 08, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.3k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.8k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
800
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.9k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.4k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Science
See All in Science
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
Lean4による汎化誤差評価の形式化
milano0017
1
390
(2025) Balade en cyclotomie
mansuy
0
310
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
320
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
190
HajimetenoLT vol.17
hashimoto_kei
1
140
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
2025-06-11-ai_belgium
sofievl
1
210
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
640
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
Featured
See All Featured
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Prompt Engineering for Job Search
mfonobong
0
120
The Pragmatic Product Professional
lauravandoore
37
7.1k
Music & Morning Musume
bryan
46
7k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
43
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
The Curse of the Amulet
leimatthew05
0
4.7k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
29
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
88
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.8k
Transcript
時系列解析入門 5章 最小2乗法 Yoshifumi Seki (Gunosy Inc) 2015.04.07
5.1 回帰モデルと最小2乗法 • ynを目的変数, xn1,..,xnmを説明変数とすると き以下を回帰モデルという • 行列を用いて以下のように表現できる
5.1 回帰モデルと最小2乗法 • 回帰モデルの対数尤度を最大にする回帰係 数aを求めるためには以下を最小化すればよ い • これを最小2乗法と呼ぶ
5.3 AICによる次数選択 • 次数: 説明変数の個数m • AICによって説明変数の個数を選択するため にはj個の変数を用いた回帰モデルのAIC_jを 求め最小となるjを選択すればよい
5.4 データの追加と分割処理 • 全データメモリに乗せると計算は辛い • 一部のデータから求められていれば,データ を追加してパラメータを更新することは容易で ある
5.5 AICによる変数選択 • 5.3節でみたような形は説明変数を採用する 優先順位が決められているケース • 本節では優先順位も決める – 説明変数の優先順位のインデックスベクトル
• 上記のモデルから最適なモデルを選択する – 個のモデルができる
None