Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[輪読]時系列解析入門 5章
Search
ysekky
April 08, 2015
Science
1
320
[輪読]時系列解析入門 5章
ysekky
April 08, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
760
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Science
See All in Science
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
120
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.1k
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
930
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
710
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
340
2025-06-11-ai_belgium
sofievl
1
130
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.6k
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
490
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
410
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
500
学術講演会中央大学学員会府中支部
tagtag
0
270
創薬における機械学習技術について
kanojikajino
16
5.3k
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Code Review Best Practice
trishagee
69
18k
Why Our Code Smells
bkeepers
PRO
337
57k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Navigating Team Friction
lara
187
15k
How to Ace a Technical Interview
jacobian
277
23k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Straight Up "How To Draw Better" Workshop
denniskardys
234
140k
Transcript
時系列解析入門 5章 最小2乗法 Yoshifumi Seki (Gunosy Inc) 2015.04.07
5.1 回帰モデルと最小2乗法 • ynを目的変数, xn1,..,xnmを説明変数とすると き以下を回帰モデルという • 行列を用いて以下のように表現できる
5.1 回帰モデルと最小2乗法 • 回帰モデルの対数尤度を最大にする回帰係 数aを求めるためには以下を最小化すればよ い • これを最小2乗法と呼ぶ
5.3 AICによる次数選択 • 次数: 説明変数の個数m • AICによって説明変数の個数を選択するため にはj個の変数を用いた回帰モデルのAIC_jを 求め最小となるjを選択すればよい
5.4 データの追加と分割処理 • 全データメモリに乗せると計算は辛い • 一部のデータから求められていれば,データ を追加してパラメータを更新することは容易で ある
5.5 AICによる変数選択 • 5.3節でみたような形は説明変数を採用する 優先順位が決められているケース • 本節では優先順位も決める – 説明変数の優先順位のインデックスベクトル
• 上記のモデルから最適なモデルを選択する – 個のモデルができる
None