Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Probabilistic Matrix Factorization
Search
ysekky
January 27, 2015
Research
0
640
[論文紹介] Probabilistic Matrix Factorization
Gunosy研究会 #82 2015/01/27
ysekky
January 27, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
770
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
数理最適化に基づく制御
mickey_kubo
6
730
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
240
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
4k
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
520
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
140
Generative Models 2025
takahashihiroshi
25
13k
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
170
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
160
Submeter-level land cover mapping of Japan
satai
3
290
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
930
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
230
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Thoughts on Productivity
jonyablonski
70
4.8k
Designing Experiences People Love
moore
142
24k
Rails Girls Zürich Keynote
gr2m
95
14k
KATA
mclloyd
32
14k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
BBQ
matthewcrist
89
9.8k
Transcript
[論文紹介] Probalis,c Matrix Factoriza,on Ruslan Salakhutdinov
and Andriy Mnih (University of Toronto) NIPS2008 Yoshifumi Seki (Gunosy Inc) 2015.01.27 @Gunosy研究会 #82
概要 • 協調フィルタリングのための次元削減手法の 提案 • NeQlix – 超大規模なデータ
• pLSAなどのギブスサンプリングでは遅いし正確性に欠 ける – バランスの悪いデータ(スパース, 偏り有り) • SVDなどでは評価値が少ないユーザの評価が平均的 なユーザに近づいてしまう
Probabilis,c Matrix Factoriza,on • MのアイテムとNのユー ザ • それぞれD次元の次元 を与えることを考える
• V, Uの各要素は平均0 のガウス分布を仮定
Probabilis,c Matrix Factoriza,on I : i, jに評価値があるときに1, それ以外は0 U, Vの対数事後分布を,
下記の条件の元で最大化する
Probabilis,c Matrix Factoriza,on • 値がすべて満たされている場合にはSVDの確率 モデルへの拡張とみなすことができる • ユーザとアイテムの内積をロジスティクス関数に 通す
• 評価値を0-‐1の範囲にMapする
Automa,c Complexity Control • 新しいデータにも適切に反映できるようにした い – 次元数を調整するのはアンバランスなデータの 場合は適切ではない
– これまでにないようなデータが入ってくる可能性 がある. • 分散のパラメータを調整することで対応させ る
Constrained PMF • PMFではデータが少な いユーザの情報が平均 に近づいてしまう • そのユーザが評価した アイテムの情報が評価
されやすいように制約 を与える
Constrained PMF ユーザのベクタは以下のようにして与えられる よって評価値は以下のようなモデルになる PMFと同様にパラメータ推定を行いモデルを生成する
Experimental Result • Dataset – a subset of NeQlix
• 50,000 users • 1,850 movies • 1,082,982 values – 半分以上は10個以下の評価しかない(sparse) • Parameter – Learning rate: 0.005 – Momentum: 0.9 – D: 30 – λ U, λV, λW, λY = 0.002
Experimental Result
None
None