Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Probabilistic Matrix Factorization
Search
ysekky
January 27, 2015
Research
0
640
[論文紹介] Probabilistic Matrix Factorization
Gunosy研究会 #82 2015/01/27
ysekky
January 27, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.1k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
760
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Research
See All in Research
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
330
線形判別分析のPU学習による朝日歌壇短歌の分析
masakat0
0
130
ノンパラメトリック分布表現を用いた位置尤度場周辺化によるRTK-GNSSの整数アンビギュイティ推定
aoki_nosse
0
320
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
560
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
180
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
220
学生向けアンケート<データサイエンティストについて>
datascientistsociety
PRO
0
3.1k
Weekly AI Agents News!
masatoto
33
68k
Mathematics in the Age of AI and the 4 Generation University
hachama
0
160
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
200
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
300
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
It's Worth the Effort
3n
185
28k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Embracing the Ebb and Flow
colly
86
4.7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Speed Design
sergeychernyshev
32
1k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
A Tale of Four Properties
chriscoyier
160
23k
A Modern Web Designer's Workflow
chriscoyier
694
190k
Producing Creativity
orderedlist
PRO
346
40k
Bash Introduction
62gerente
614
210k
Transcript
[論文紹介] Probalis,c Matrix Factoriza,on Ruslan Salakhutdinov
and Andriy Mnih (University of Toronto) NIPS2008 Yoshifumi Seki (Gunosy Inc) 2015.01.27 @Gunosy研究会 #82
概要 • 協調フィルタリングのための次元削減手法の 提案 • NeQlix – 超大規模なデータ
• pLSAなどのギブスサンプリングでは遅いし正確性に欠 ける – バランスの悪いデータ(スパース, 偏り有り) • SVDなどでは評価値が少ないユーザの評価が平均的 なユーザに近づいてしまう
Probabilis,c Matrix Factoriza,on • MのアイテムとNのユー ザ • それぞれD次元の次元 を与えることを考える
• V, Uの各要素は平均0 のガウス分布を仮定
Probabilis,c Matrix Factoriza,on I : i, jに評価値があるときに1, それ以外は0 U, Vの対数事後分布を,
下記の条件の元で最大化する
Probabilis,c Matrix Factoriza,on • 値がすべて満たされている場合にはSVDの確率 モデルへの拡張とみなすことができる • ユーザとアイテムの内積をロジスティクス関数に 通す
• 評価値を0-‐1の範囲にMapする
Automa,c Complexity Control • 新しいデータにも適切に反映できるようにした い – 次元数を調整するのはアンバランスなデータの 場合は適切ではない
– これまでにないようなデータが入ってくる可能性 がある. • 分散のパラメータを調整することで対応させ る
Constrained PMF • PMFではデータが少な いユーザの情報が平均 に近づいてしまう • そのユーザが評価した アイテムの情報が評価
されやすいように制約 を与える
Constrained PMF ユーザのベクタは以下のようにして与えられる よって評価値は以下のようなモデルになる PMFと同様にパラメータ推定を行いモデルを生成する
Experimental Result • Dataset – a subset of NeQlix
• 50,000 users • 1,850 movies • 1,082,982 values – 半分以上は10個以下の評価しかない(sparse) • Parameter – Learning rate: 0.005 – Momentum: 0.9 – D: 30 – λ U, λV, λW, λY = 0.002
Experimental Result
None
None