Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Generative Spoken Dialogue Language Modeling [対...
Search
Yubo
December 14, 2023
Research
1
180
Generative Spoken Dialogue Language Modeling [対話論文読み会@電通大]
TACL'23でMeta AI Researchから発表された"Generative Spoken Dialogue Language Modeling"の輪読資料です.
Yubo
December 14, 2023
Tweet
Share
Other Decks in Research
See All in Research
ブラックボックス機械学習モデルの判断根拠を説明する技術
yuyay
0
190
第60回名古屋CV・PRML勉強会:CVPR2024論文紹介(AM-RADIO)
naok615
0
200
Weekly AI Agents News! 6月号 論文のアーカイブ
masatoto
1
130
SSII2024 [OS2] 大規模言語モデルとVision & Languageのこれから
ssii
PRO
5
1.4k
SSII2024 [TS3] 画像認識におけるマルチモーダル基盤モデル ~基盤モデル、あなたのタスクに役立つかも?~
ssii
PRO
0
1.1k
ヘルプデスクの事例で学ぶAIエージェント
masatoto
13
6.8k
SSII2024 [OS2] GPT-4Vで画像認識は終わるのか(オープニング)
ssii
PRO
0
750
クラウドソーシングによる学習データ作成と品質管理(セキュリティキャンプ2024全国大会D2講義資料)
takumi1001
0
170
Physics of Language Models: Part 3.1, Knowledge Storage and Extraction
sosk
1
770
初めての研究発表を成功させよう! スライド作成の基本
ayaco0
11
4.4k
Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices
masakat0
0
160
Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift
nanofi
3
290
Featured
See All Featured
Debugging Ruby Performance
tmm1
72
12k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
34
1.7k
A Philosophy of Restraint
colly
202
16k
Making Projects Easy
brettharned
113
5.8k
Documentation Writing (for coders)
carmenintech
65
4.3k
The World Runs on Bad Software
bkeepers
PRO
64
11k
The Straight Up "How To Draw Better" Workshop
denniskardys
230
130k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
25
1.3k
Web Components: a chance to create the future
zenorocha
308
41k
Making the Leap to Tech Lead
cromwellryan
128
8.8k
A better future with KSS
kneath
235
17k
Creatively Recalculating Your Daily Design Routine
revolveconf
215
12k
Transcript
1 Generative Spoken Dialogue Language Modeling @TACLʼ23 佐々⽊裕多 東京⼯業⼤学 M1
Tu Anh Nguyen et al. from Meta AI Research 🔗https://aclanthology.org/2023.tacl-1.15/ https://github.com/facebookresearch/fairseq/tree/main/examples/textless_nlp/dgslm 🗣https://speechbot.github.io/dgslm
2 概要 Ø ⾳声⼊⼒から⾳声⽣成を⾏う`textless`対話モデル dGSLMを提案 Ø Cross-attentionを採⽤した Dual-tower Transformerアーキテクチャ Ø
テキストやその他ラベルを⽤いずに2000h⽣⾳声で学習 Ø 笑いや相槌のような⾮⾔語な語彙を⽣成 Ø ポーズやオーバラップのようなターンテイキングの ⽣成が可能 Ø 分布も評価データセットと⾼い相関 Ø テキストベースの対話モデルと⽐べ、発話内容には 課題あり
3 対話システムの現状 Ø 会話は流れるようなターンの連続 ❌ 多すぎるオーバラップ ❌ ⻑い沈黙 Ø オーバラップや沈黙は起きるが、重要な情報を伝える
Ø Content-neutralな⾔語情報 Ø E.g., “hmm”, “yeah” Ø ⾮⾔語な語彙 Ø E.g., 笑い Ø 聞き⼿の態度 Ø E.g., 相槌 テキストベースのインターフェースでの対話研究が多いため、 ターンテイキングの調整に難しさ
4 本研究の⽴ち位置 Ø テキストやASRを介さず、⽣⾳声から⾳声対話モデルを学習す る実現可能性を検証 Ø ASRを通すとユーザからの⼊⼒を待つ必要性 Ø ⾃⼰教師あり学習やtextlessな⾳声処理が発展中 Ø
対話モデルを⾮⾔語的な特徴でも評価 Ø 提案モデルdGSLMが、会話の表⾯上の特徴であるターンテイキ ングや相槌を⾼精度で模倣できていることを⽰す Ø テキストベースのカスケードな対話モデルのような意味的な情報を明⽰ 的には学習しないが…
5 提案⼿法 2. Dialogue Transformer Language Modeling (DLM) Dual-tower Transformerで2チャンネル⼊出⼒
1. Discrete Phonetic Representation HuBERT + kmeansで⽣⾳声から⾳韻表現を抽出 3. Waveform Generation ⼩データでも⾼品質な⾳声合成が可能な 離散的unit-baseのHiFi-GANボコーダ
6 1. Discrete Phonetic Representation HuBERT: Self-Supervised Speech Representation Learning
by Masked Prediction of Hidden Units Ø 会話には “hmm”のようなカジュアル表現や 笑いのような⾮⾔語⾳声含まれる Ø ドメインに適切な⾳韻表現を獲得するため HuBERTを採⽤ Ø HuBERTの出⼒をkmeansでクラスタリング Ø 離散的な⾳韻unitを獲得 Ø 最終的な離散的⾳韻unitのコードブックは500 Ø 様々な⾳韻クラスをモデル化 ※HuBERTの⾃⼰教師あり学習は⾯⽩いので 興味があれば論⽂を参照してください
7 2. Dialogue Transformer Language Modeling DLMアーキテクチャ DLM学習/推論
8 2. Dialogue Transformer Language Modeling DLMアーキテクチャ Ø Dual-tower Transformerアーキテクチャ
Ø 2チャンネルにそれぞれの発話者の⾳声が⼊⼒ Ø 2つのTransformerは重みを共有 Ø 話者から独⽴したモデルを学習 Ø 6層8アテンションヘッド 埋め込みサイズは512 Ø Channel-wiseなcross-attention Ø それぞれのチャンネルの情報を取り込む Ø 上位4層のみ
9 2. Dialogue Transformer Language Modeling DLM学習/推論 1. Edge Unit
Prediction 2. Delayed Duration Prediction 2つのObjective
10 2. Dialogue Transformer Language Modeling DLM学習/推論 1. Edge Unit
Prediction Unit予測と連続する時間を同時に 学習するのは困難で、性能悪化の 要因に → Unitが前時刻から変わる時だけ 学習対象 前時刻と異なるunitを対象に Cross-entropy 2チャンネル(話者) 𝑢! : t時刻のunit 𝑐 : 話者(チャンネル)
11 2. Dialogue Transformer Language Modeling DLM学習/推論 2. Delayed Duration
Prediction 同⼀unitが連続する時間を予測 前時刻と異なるunitを対象に L1 loss (MAE) 2チャンネル(話者) 𝑑! : t時刻unitの予測duration
12 2. Dialogue Transformer Language Modeling DLM学習/推論 Training Objective
13 3. Waveform Generation Ø HuBERTから得られるunitと1-hotの話者情報を⼊⼒ HiFi-GAN: Generative Adversarial Networks
for Efficient and High Fidelity Speech Synthesis ここの入力がオリジナルと異なる
14 評価 〜Training Metrics〜 Ø Cross-attention Ø Edge Unit予測性能は微改善 Ø
Edge Unit Prediction Ø Edge Unit予測性能が⼤幅改善 Ø Edge Duration Prediction Ø Edge Unit予測性能も改善 Ø Delayed factorを導⼊ @Edge Duration Prediction Ø ベストモデル ベースライン: Multi Stream Transformer データセット : Fisher(2000h英語の電話対話音声)
15 ターンテイキングの評価軸 連続した発話 発話内の沈黙 発話の被せ 発話間の沈黙
16 評価 〜ターンテイキング〜 DLM-1は IPU以外長い DLM-2はオーバーラップ短め ポーズ/ギャップ長め DLM-3-5はオーバーラップ長め ポーズ/ギャップ短め
17 評価 〜ターンテイキング〜 最初30sと以降90sの相関 開始プロンプトと生成音声のターンテイキングイベント発生時間の相関 似ている
18 評価 〜対話イベント〜 Ø WPM (Words per minute) Ø LPM
(Laughs per minute) Ø FWR (Filler per minute) Ø DLM-3-5 Ø 笑いやフィラーのような⾃然な イベントに寄与 Ø ⾔葉が多い カスケード:ASR (wav2vec2-large)→DialoGPT→Google TTS API
19 評価 〜Semantic Evaluation〜 Ø Conditional generation Ø 10sのプロンプトに対する⽣成 Ø
TextlessモデルのPPL⾼すぎ Ø 意味的に⼀貫性のある⾳声⽣成 に失敗 Ø カスケードモデル Ø ワード/サブワードレベルで学習 しているため、良いPPLを達成 生成音声ASRに対するDialoGPTのperplexity @t1 := デフォルトの温度パラメータ1.0 @GT := Ground truthのVERTと同等の温度パラメータ(次項参照)
20 評価 〜Semantic Evaluation〜 温度パラメータ [0.3, 2.0]に対するDialoGPTのPPLの摂動
21 評価 〜⼈⼿評価〜 Ø DLM-1はスコアが低い Ø DLM-5はスコア⾼いが、 カスケードやGTと⽐べると M-MOSが低い Ø
⾃然なターンテイキングは真似 できているが… Ø 意義のある内容の⽣成には失敗 Ø データセットが⼩さいから︖ 👑 😨 N-MOS: Naturalness M-MOS: Meaningfulness
22 まとめ Ø ⾳声⼊⼒から⾳声⽣成を⾏う`textless`対話モデル dGSLMを提案 Ø Cross-attentionを採⽤した Dual-tower Transformerアーキテクチャ Ø
テキストやその他ラベルを⽤いずに2000h⽣⾳声で学習 Ø 笑いや相槌のような⾮⾔語な語彙を⽣成 Ø ポーズやオーバラップのようなターンテイキングの ⽣成が可能 Ø 分布も評価データセットと⾼い相関 Ø テキストベースの対話モデルと⽐べ、発話内容には 課題あり