Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Generative Spoken Dialogue Language Modeling [対...
Search
Sloth
December 14, 2023
Research
1
410
Generative Spoken Dialogue Language Modeling [対話論文読み会@電通大]
TACL'23でMeta AI Researchから発表された"Generative Spoken Dialogue Language Modeling"の輪読資料です.
Sloth
December 14, 2023
Tweet
Share
More Decks by Sloth
See All by Sloth
Core Audio tapを使ったリアルタイム音声処理のお話
yuta0306
0
290
Other Decks in Research
See All in Research
説明可能な機械学習と数理最適化
kelicht
2
790
超高速データサイエンス
matsui_528
1
330
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.7k
POI: Proof of Identity
katsyoshi
0
120
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
300
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
390
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
110
湯村研究室の紹介2025 / yumulab2025
yumulab
0
280
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
270
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
370
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
5
1.2k
Featured
See All Featured
Become a Pro
speakerdeck
PRO
31
5.7k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
93
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
67
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
38
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
31
Speed Design
sergeychernyshev
33
1.4k
Transcript
1 Generative Spoken Dialogue Language Modeling @TACLʼ23 佐々⽊裕多 東京⼯業⼤学 M1
Tu Anh Nguyen et al. from Meta AI Research 🔗https://aclanthology.org/2023.tacl-1.15/ https://github.com/facebookresearch/fairseq/tree/main/examples/textless_nlp/dgslm 🗣https://speechbot.github.io/dgslm
2 概要 Ø ⾳声⼊⼒から⾳声⽣成を⾏う`textless`対話モデル dGSLMを提案 Ø Cross-attentionを採⽤した Dual-tower Transformerアーキテクチャ Ø
テキストやその他ラベルを⽤いずに2000h⽣⾳声で学習 Ø 笑いや相槌のような⾮⾔語な語彙を⽣成 Ø ポーズやオーバラップのようなターンテイキングの ⽣成が可能 Ø 分布も評価データセットと⾼い相関 Ø テキストベースの対話モデルと⽐べ、発話内容には 課題あり
3 対話システムの現状 Ø 会話は流れるようなターンの連続 ❌ 多すぎるオーバラップ ❌ ⻑い沈黙 Ø オーバラップや沈黙は起きるが、重要な情報を伝える
Ø Content-neutralな⾔語情報 Ø E.g., “hmm”, “yeah” Ø ⾮⾔語な語彙 Ø E.g., 笑い Ø 聞き⼿の態度 Ø E.g., 相槌 テキストベースのインターフェースでの対話研究が多いため、 ターンテイキングの調整に難しさ
4 本研究の⽴ち位置 Ø テキストやASRを介さず、⽣⾳声から⾳声対話モデルを学習す る実現可能性を検証 Ø ASRを通すとユーザからの⼊⼒を待つ必要性 Ø ⾃⼰教師あり学習やtextlessな⾳声処理が発展中 Ø
対話モデルを⾮⾔語的な特徴でも評価 Ø 提案モデルdGSLMが、会話の表⾯上の特徴であるターンテイキ ングや相槌を⾼精度で模倣できていることを⽰す Ø テキストベースのカスケードな対話モデルのような意味的な情報を明⽰ 的には学習しないが…
5 提案⼿法 2. Dialogue Transformer Language Modeling (DLM) Dual-tower Transformerで2チャンネル⼊出⼒
1. Discrete Phonetic Representation HuBERT + kmeansで⽣⾳声から⾳韻表現を抽出 3. Waveform Generation ⼩データでも⾼品質な⾳声合成が可能な 離散的unit-baseのHiFi-GANボコーダ
6 1. Discrete Phonetic Representation HuBERT: Self-Supervised Speech Representation Learning
by Masked Prediction of Hidden Units Ø 会話には “hmm”のようなカジュアル表現や 笑いのような⾮⾔語⾳声含まれる Ø ドメインに適切な⾳韻表現を獲得するため HuBERTを採⽤ Ø HuBERTの出⼒をkmeansでクラスタリング Ø 離散的な⾳韻unitを獲得 Ø 最終的な離散的⾳韻unitのコードブックは500 Ø 様々な⾳韻クラスをモデル化 ※HuBERTの⾃⼰教師あり学習は⾯⽩いので 興味があれば論⽂を参照してください
7 2. Dialogue Transformer Language Modeling DLMアーキテクチャ DLM学習/推論
8 2. Dialogue Transformer Language Modeling DLMアーキテクチャ Ø Dual-tower Transformerアーキテクチャ
Ø 2チャンネルにそれぞれの発話者の⾳声が⼊⼒ Ø 2つのTransformerは重みを共有 Ø 話者から独⽴したモデルを学習 Ø 6層8アテンションヘッド 埋め込みサイズは512 Ø Channel-wiseなcross-attention Ø それぞれのチャンネルの情報を取り込む Ø 上位4層のみ
9 2. Dialogue Transformer Language Modeling DLM学習/推論 1. Edge Unit
Prediction 2. Delayed Duration Prediction 2つのObjective
10 2. Dialogue Transformer Language Modeling DLM学習/推論 1. Edge Unit
Prediction Unit予測と連続する時間を同時に 学習するのは困難で、性能悪化の 要因に → Unitが前時刻から変わる時だけ 学習対象 前時刻と異なるunitを対象に Cross-entropy 2チャンネル(話者) 𝑢! : t時刻のunit 𝑐 : 話者(チャンネル)
11 2. Dialogue Transformer Language Modeling DLM学習/推論 2. Delayed Duration
Prediction 同⼀unitが連続する時間を予測 前時刻と異なるunitを対象に L1 loss (MAE) 2チャンネル(話者) 𝑑! : t時刻unitの予測duration
12 2. Dialogue Transformer Language Modeling DLM学習/推論 Training Objective
13 3. Waveform Generation Ø HuBERTから得られるunitと1-hotの話者情報を⼊⼒ HiFi-GAN: Generative Adversarial Networks
for Efficient and High Fidelity Speech Synthesis ここの入力がオリジナルと異なる
14 評価 〜Training Metrics〜 Ø Cross-attention Ø Edge Unit予測性能は微改善 Ø
Edge Unit Prediction Ø Edge Unit予測性能が⼤幅改善 Ø Edge Duration Prediction Ø Edge Unit予測性能も改善 Ø Delayed factorを導⼊ @Edge Duration Prediction Ø ベストモデル ベースライン: Multi Stream Transformer データセット : Fisher(2000h英語の電話対話音声)
15 ターンテイキングの評価軸 連続した発話 発話内の沈黙 発話の被せ 発話間の沈黙
16 評価 〜ターンテイキング〜 DLM-1は IPU以外長い DLM-2はオーバーラップ短め ポーズ/ギャップ長め DLM-3-5はオーバーラップ長め ポーズ/ギャップ短め
17 評価 〜ターンテイキング〜 最初30sと以降90sの相関 開始プロンプトと生成音声のターンテイキングイベント発生時間の相関 似ている
18 評価 〜対話イベント〜 Ø WPM (Words per minute) Ø LPM
(Laughs per minute) Ø FWR (Filler per minute) Ø DLM-3-5 Ø 笑いやフィラーのような⾃然な イベントに寄与 Ø ⾔葉が多い カスケード:ASR (wav2vec2-large)→DialoGPT→Google TTS API
19 評価 〜Semantic Evaluation〜 Ø Conditional generation Ø 10sのプロンプトに対する⽣成 Ø
TextlessモデルのPPL⾼すぎ Ø 意味的に⼀貫性のある⾳声⽣成 に失敗 Ø カスケードモデル Ø ワード/サブワードレベルで学習 しているため、良いPPLを達成 生成音声ASRに対するDialoGPTのperplexity @t1 := デフォルトの温度パラメータ1.0 @GT := Ground truthのVERTと同等の温度パラメータ(次項参照)
20 評価 〜Semantic Evaluation〜 温度パラメータ [0.3, 2.0]に対するDialoGPTのPPLの摂動
21 評価 〜⼈⼿評価〜 Ø DLM-1はスコアが低い Ø DLM-5はスコア⾼いが、 カスケードやGTと⽐べると M-MOSが低い Ø
⾃然なターンテイキングは真似 できているが… Ø 意義のある内容の⽣成には失敗 Ø データセットが⼩さいから︖ 👑 😨 N-MOS: Naturalness M-MOS: Meaningfulness
22 まとめ Ø ⾳声⼊⼒から⾳声⽣成を⾏う`textless`対話モデル dGSLMを提案 Ø Cross-attentionを採⽤した Dual-tower Transformerアーキテクチャ Ø
テキストやその他ラベルを⽤いずに2000h⽣⾳声で学習 Ø 笑いや相槌のような⾮⾔語な語彙を⽣成 Ø ポーズやオーバラップのようなターンテイキングの ⽣成が可能 Ø 分布も評価データセットと⾼い相関 Ø テキストベースの対話モデルと⽐べ、発話内容には 課題あり