Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Whisperに耳をすませば
Search
Henry Cui
October 30, 2022
Technology
0
270
Whisperに耳をすませば
Henry Cui
October 30, 2022
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
1
220
Direct Preference Optimization
zchenry
0
410
Diffusion Model with Perceptual Loss
zchenry
0
470
レンズの下のLLM / LLM under the Lens
zchenry
0
200
Go with the Prompt Flow
zchenry
0
180
Mojo Dojo
zchenry
0
230
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
630
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
280
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
160
Other Decks in Technology
See All in Technology
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
260
Next.js 16の新機能 Cache Components について
sutetotanuki
0
190
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.4k
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
240
Claude Skillsの テスト業務での活用事例
moritamasami
1
110
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
250
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
1.7k
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
200
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
2.3k
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.9k
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
250
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.5k
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Embracing the Ebb and Flow
colly
88
4.9k
Ethics towards AI in product and experience design
skipperchong
1
140
Building Adaptive Systems
keathley
44
2.9k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
31
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
The SEO identity crisis: Don't let AI make you average
varn
0
39
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.1k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
67
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Transcript
Whisperに耳をすませば 機械学習の社会実装勉強会第16回 Henry 2022/10/30
自己紹介 ▪ 東京大学理学部情報科学科 ▪ 同大学大学院情報理工学系研究科コンピュター科学専攻 ▪ 博士(情報理工学)取得 • ICMLなどの国際・国内学会・ジャーナルに論文発表 •
学振DC2・理研AIPセンター研究パートタイマー • AIPチャレンジなどの競争的研究費取得・外国大学への訪問 ▪ 在学中に株式会社パンハウスを共同創業 2
内容 ▪ Whisperとは ▪ 誰でも試せるデモ ▪ Whisperを使ったアプリケーション 3
Whisperは音声認識モデル Whisperは最近OpenAIがオープンソースした音声認識モデル で、学習済み重みも公開されている 特徴は以下三つ ▪ シンプルなEnd-to-end Transformerベースのモデル ▪ 膨大な教師つき学習データ ▪
多タスクで訓練されて、多タスクを遂行できる 4
Whisperのモデル構造 ▪ シンプルな End-to-end モデル ▪ Transformerベース ▪ 多タスク対応のため、タスクを指定するトークンがある 5
Whisperが学習したデータ ▪ 膨大かつ教師つきのデータセットを使うのは初 • 既存手法は、少ない教師つきデータか、膨大な教師なしデータでしか 学習できていない ▪ 総計68万時間(約78年)になる • 従来使われる教師つきデータのおよそ10倍のサイズ
• データ増しによる性能改善の余地はまだある(scaling law) ▪ 三分の一が非英語 • 公式ブログではスペイン語・韓国語の認識例が挙げられている • もちろん日本語音声も認識可能 • 99言語に対応との紹介も ▪ Zero-shotで頑丈性を評価 6
Whisperが遂行できるタスク ▪ 公式ブログによると、以下のタスクが遂行できる • 言語認識 ▪ 与えれた音声の言語を答える • フレーズのタイムスタンプ ▪
音声にある各フレーズのタイムスタンプを答える • 多言語スピーチ文字起こし ▪ 音声にある言語そのままの文字起こし • スピーチの英語翻訳 ▪ 音声にある言語を英語に翻訳した文字起こし ▪ ほとんどの音声・文字に関わるアプリケーションをカバー 7
内容 ▪ Whisperとは ▪ 誰でも試せるデモ ▪ Whisperを使ったアプリケーション 8
Webページとコマンドラインツール ▪ https://huggingface.co/spaces/openai/whisper ▪ pip install git+https://github.com/openai/whisper.git でイン ストールすれば、whisper audio.mp3
--model medium のよう に推論できる ▪ HuggingFaceの一つのモデルとしても使える 9
内容 ▪ Whisperとは ▪ 誰でも試せるデモ ▪ Whisperを使ったアプリケーション 10
YouWhisper ▪ Youtube動画の自動字幕生成 ▪ https://huggingface.co/spaces/sensahin/YouWhisper ▪ ソースコードなどのファイルも参照可能 11
Podcastの文字起こし ▪ https://twitter.com/1littlecoder/status/15744743569225400 32 12
日本語アクセントの英語も ▪ https://twitter.com/sleepy_yoshi/status/157371909458654 8224 13
スペイン語の歌も行ける ▪ https://twitter.com/eoteromuras/status/1573009151600508 939 14
一方で精度が高くない言語もある ▪ https://twitter.com/silasmorkgard/status/15735939518268 45696 15
DeepLと組んでより流暢な日本語に ▪ https://twitter.com/Taro32546/status/15772600919332167 69 16
無音の場合にはまだ弱い ▪ https://twitter.com/smly/status/1581663054366138368 ▪ 短く切れば回避できる 17
古い映画の字幕を作ってみたら酷かった ▪ https://blog.takuya-andou.com/entry/youtube_whisper3 18
まとめ ▪ OpenAIのWhisperモデルは膨大な学習データのおかげで、 多数のタスクで高性能を達成した ▪ 無音やマイナー言語などの場合にはまだ弱い時がある ▪ アプリケーションが多く展望される 19