Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2023年度秋学期 応用数学(解析)第5回 微分方程式とは・変数分離形 (2023. 10. 19)
Search
Akira Asano
PRO
October 10, 2023
Education
1
270
2023年度秋学期 応用数学(解析)第5回 微分方程式とは・変数分離形 (2023. 10. 19)
関西大学総合情報学部 応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2023a/AMA/
Akira Asano
PRO
October 10, 2023
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2024年度秋学期 統計学 第13回 不確かな測定の不確かさを測る - 不偏分散とt分布 (2024. 12. 18)
akiraasano
PRO
0
37
2024年度秋学期 画像情報処理 第11回 逆投影法による再構成 (2024. 12. 13)
akiraasano
PRO
0
20
2024年度秋学期 統計学 第12回 分布の平均を推測する - 区間推定 (2024. 12. 11)
akiraasano
PRO
0
43
2024年度秋学期 統計学 第11回 分布の「型」を考える - 確率分布モデルと正規分布 (2024. 12. 4)
akiraasano
PRO
0
53
2024年度秋学期 画像情報処理 第10回 Radon変換と投影切断面定理 (2024. 12. 6)
akiraasano
PRO
0
28
2024年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2024. 11. 29)
akiraasano
PRO
0
27
2024年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2024. 11. 29)
akiraasano
PRO
0
30
2024年度秋学期 統計学 第9回 確からしさを記述する ― 確率 (2024. 11. 27)
akiraasano
PRO
0
59
2024年度秋学期 統計学 第10回 分布の推測とは - 標本調査,度数分布と確率分布 (2024. 11. 27)
akiraasano
PRO
0
44
Other Decks in Education
See All in Education
脳卒中になってしまった さあ、どうする
japanstrokeassociation
0
1.2k
Comment aborder et contribuer sereinement à un projet open source ? (Masterclass Université Toulouse III)
pylapp
0
3.3k
Zero to Hero
takesection
0
130
子どものためのプログラミング道場『CoderDojo』〜法人提携例〜 / Partnership with CoderDojo Japan
coderdojojapan
4
15k
お仕事図鑑pitchトーク
tetsuyaooooo
0
2.3k
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
160
Kaggle 班ができるまで
abap34
1
220
Flinga
matleenalaakso
2
13k
ISMS審査準備ブック_サンプル【LRM 情報セキュリティお役立ち資料】
lrm
0
570
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
2.5k
AWS Well-Architected Labを活用してつよつよAWSエンジニアになろう!!! #jawsug_tokyo
masakiokuda
0
240
LLMs for Social Simulation: Progress, Opportunities and Challenges
wingnus
1
130
Featured
See All Featured
Building an army of robots
kneath
302
44k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
Producing Creativity
orderedlist
PRO
342
39k
The Cult of Friendly URLs
andyhume
78
6.1k
Into the Great Unknown - MozCon
thekraken
34
1.6k
A better future with KSS
kneath
238
17k
Done Done
chrislema
182
16k
Gamification - CAS2011
davidbonilla
80
5.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
530
GitHub's CSS Performance
jonrohan
1031
460k
Automating Front-end Workflow
addyosmani
1366
200k
BBQ
matthewcrist
85
9.4k
Transcript
浅野 晃 関西大学総合情報学部 2023年度秋学期 応用数学(解析) 第2部・基本的な微分方程式 微分方程式とは・変数分離形 第5回
25 2 微分方程式とは🤔🤔
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式とは 3 微分方程式は,解が「関数」で,その微分が含まれる方程式 ふつうの方程式は,解は「数」 x が t
の関数(つまりx(t))のとき, x2 − 5x + 3 = 0 x′ = x x′′ − 5x′ + 6x = 0
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式とは 3 微分方程式は,解が「関数」で,その微分が含まれる方程式 ふつうの方程式は,解は「数」 x が t
の関数(つまりx(t))のとき, x2 − 5x + 3 = 0 x′ = x x′′ − 5x′ + 6x = 0 関数は「量の変化」 微分方程式は「変化の条件」
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式とは 3 微分方程式は,解が「関数」で,その微分が含まれる方程式 ふつうの方程式は,解は「数」 x が t
の関数(つまりx(t))のとき, x2 − 5x + 3 = 0 x′ = x x′′ − 5x′ + 6x = 0 関数は「量の変化」 微分方程式は「変化の条件」 微分方程式を解くと,「どう変化するか」がわかる
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 1階・2階,常微分・偏微分 4 1階導関数に関する微分方程式: 1階微分方程式 x′ = x
x′′ − 5x′ + 6x = 0 1変数関数の微分方程式は常微分方程式 2変数以上の関数の偏微分に関する 微分方程式は偏微分方程式 2階導関数に関する微分方程式: 2階微分方程式 ⋮
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解くとは 5 微分方程式を「解く」とは, その方程式を満たす関数を見つけること 解ける微分方程式のうち,簡単なものの 基本的なパターンをいくつか紹介します。 微分方程式は
特定のパターンのものしか解けない
25 6 微分方程式の例🤔🤔
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 運動方程式 7 加速度は速度の微分, 速度は位置の微分だから, 力 F 物体の質量
m 物体の加速度 a 物体に働く力と,その運動との関係 F = ma F = mx′′ 時刻 t の物体の位置を x(t) とすると これを解いて関数 x(t) を求めると,時刻 t での物体の位置がわかる
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 落下の問題 8 抵抗力は速度の2乗に比例する 力 F =下向きの重力 mg
+ 上向きの抵抗力 物体が空気中を落下するとき 運動方程式は なので F = mx′ ′ −k(x′)2 mg − k(x′)2 = mx′′
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 落下の問題 8 抵抗力は速度の2乗に比例する 力 F =下向きの重力 mg
+ 上向きの抵抗力 物体が空気中を落下するとき 運動方程式は なので F = mx′ ′ −k(x′)2 mg − k(x′)2 = mx′′
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 落下の問題 8 抵抗力は速度の2乗に比例する 力 F =下向きの重力 mg
+ 上向きの抵抗力 物体が空気中を落下するとき 運動方程式は なので F = mx′ ′ −k(x′)2 mg − k(x′)2 = mx′′
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 放射性物質の崩壊 9 崩壊の速度は,現在存在する物質の量に比例する x′ = −kx 時刻
t の時点で存在する物質の量を x(t) とすると
25 10 一般解・特殊解・特異解🤔🤔
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 一般解と特殊解 11 x′ = −kx 時刻 t
の時点で存在する物質の量を x(t) とすると 定数 k が決まったら,解はひとつの関数に決まるか?
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 一般解と特殊解 11 x′ = −kx 時刻 t
の時点で存在する物質の量を x(t) とすると 定数 k が決まったら,解はひとつの関数に決まるか? 決まらない 最初 t = 0 に存在する物質の量 x(0) が わからないと解はひとつに決まらない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 一般解と特殊解 11 x′ = −kx 時刻 t
の時点で存在する物質の量を x(t) とすると 定数 k が決まったら,解はひとつの関数に決まるか? 決まらない 最初 t = 0 に存在する物質の量 x(0) が わからないと解はひとつに決まらない 初期値という
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 一般解と特殊解 12 初期値が定まったときに求められる解を 特殊解(particular solution) という 初期値が定まっていないとき,
初期値を代入したらひとつの特殊解が求められるような形の解を 一般解(general solution) という x(t) = C exp(−kt) 一般解の例:
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 一般解と特殊解 12 初期値が定まったときに求められる解を 特殊解(particular solution) という 初期値が定まっていないとき,
初期値を代入したらひとつの特殊解が求められるような形の解を 一般解(general solution) という x(t) = C exp(−kt) 初期値が定まってはじめて決まる パラメータ 一般解の例:
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数)
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら 一般解
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら 一般解 でも,x ≡ 0 も解では?
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t C = 0 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t C = 0 C > 0 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t C = 0 – C C > 0 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t C = 0 – C C > 0 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t C = 0 – C C > 0 C < 0 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t C = 0 – C C > 0 C < 0 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t C = 0 – C C > 0 C < 0 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 x′ = x1 3 の一般解
x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t C = 0 – C C > 0 C < 0 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない x ≡ 0 も解
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 13 特異解(singular solution)という x′ = x1
3 の一般解 x = { 2 3 (t + C)}3 2 方 も明ら ( C は定数) (なぜならば) x′ = 3 2 { 2 3 (t + C)}1 2 · 2 3 = { 2 3 (t + C)}1 2 = x1 3 x = { 2 3 (t + C)}3 2 方 も明ら x t C = 0 – C C > 0 C < 0 一般解 でも,x ≡ 0 も解では? x = { 2 3 (t + C)}3 2 方 も明ら 一般解 には Cをどう変えても含まれない x ≡ 0 も解
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 特異解と解の一意性 14 一意性の十分条件のひとつ「リプシッツ条件」 初期値がひとつ定まったときに,解がひとつだけに決まることを, 解が一意(unique)であるという 微分方程式が のとき,初期値のまわりでどんな
x1, x2 についても x′ (t) = f(t, x) |f(t, x1) − f(t, x2)| L|x1 − x2| となる定数 L があるなら,その初期値について一意 「x のわずかな変化について, f がいくらでも大きく変化する,ということはない」くらいの意味
25 15 変数分離形🤔🤔
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 16 を解く x′ = −kx
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 16 を解く x′ = −kx dx
dt = −kx と直す
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 16 を解く x′ = −kx dx
dt = −kx と直す x ̸= 0 として
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 16 を解く x′ = −kx dx
dt = −kx と直す x ̸= 0 として 1 x dx dt = −k と変形する
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 16 を解く x′ = −kx dx
dt = −kx と直す x ̸= 0 として 1 x dx dt = −k と変形する 1 x dx dt dt = (−k)dt 両辺を t で積分
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 16 を解く x′ = −kx dx
dt = −kx と直す x ̸= 0 として 1 x dx dt = −k と変形する 1 x dx dt dt = (−k)dt 両辺を t で積分 1 x dx = (−k)dt 置換積分をする
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 16 を解く x′ = −kx dx
dt = −kx と直す x ̸= 0 として 1 x dx dt = −k と変形する 1 x dx dt dt = (−k)dt 両辺を t で積分 1 x dx = (−k)dt 置換積分をする 積分を解く 1 x dx = − kdt log |x| + C1 = −kt + C2
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 16 を解く x′ = −kx dx
dt = −kx と直す x ̸= 0 として 1 x dx dt = −k と変形する 1 x dx dt dt = (−k)dt 両辺を t で積分 1 x dx = (−k)dt 置換積分をする 積分を解く 1 x dx = − kdt log |x| + C1 = −kt + C2 C1, C2 は積分定数
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 17 を解く x′ = −kx 積分を解く
1 x dx = − kdt log |x| + C1 = −kt + C2
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 17 を解く x′ = −kx 積分を解く
1 x dx = − kdt log |x| + C1 = −kt + C2 log |x| = −kt + (C2 − C1) x = ± exp{−kt + (C2 − C1)} x = ± exp(C2 − C1) exp(−kt)
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 17 を解く x′ = −kx 積分を解く
1 x dx = − kdt log |x| + C1 = −kt + C2 log |x| = −kt + (C2 − C1) x = ± exp{−kt + (C2 − C1)} x = ± exp(C2 − C1) exp(−kt) ± exp(C2 − C1) をあらためて定数 C とすると
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 17 を解く x′ = −kx 積分を解く
1 x dx = − kdt log |x| + C1 = −kt + C2 log |x| = −kt + (C2 − C1) x = ± exp{−kt + (C2 − C1)} x = ± exp(C2 − C1) exp(−kt) ± exp(C2 − C1) をあらためて定数 C とすると x(t) = C exp(−kt) 一般解は
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 17 を解く x′ = −kx 積分を解く
1 x dx = − kdt log |x| + C1 = −kt + C2 log |x| = −kt + (C2 − C1) x = ± exp{−kt + (C2 − C1)} x = ± exp(C2 − C1) exp(−kt) ± exp(C2 − C1) をあらためて定数 C とすると x(t) = C exp(−kt) 一般解は x ≡ 0 も解で,一般解に含まれる。 x ̸= 0 としたが, さっき
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 18 を解くとき,ふつうは x′ = −kx dx
dt = −kx から dx x = −kdt と,分数の計算のように変形し 1 x dx = (−k)dt と積分する
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 18 を解くとき,ふつうは x′ = −kx x
が左辺,t が右辺に分離しているので,変数分離形という dx dt = −kx から dx x = −kdt と,分数の計算のように変形し 1 x dx = (−k)dt と積分する
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 18 を解くとき,ふつうは x′ = −kx x
が左辺,t が右辺に分離しているので,変数分離形という dx dt = −kx から dx x = −kdt と,分数の計算のように変形し 1 x dx = (−k)dt と積分する
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 19 一般には g(x)x′ = f(t)
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 19 一般には g(x)x′ = f(t) とすると
x′ = dx dt
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 19 一般には g(x)x′ = f(t) とすると
x′ = dx dt g(x)dx = f(t)dt
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 19 一般には 両辺それぞれを積分すると g(x)x′ = f(t)
とすると x′ = dx dt g(x)dx = f(t)dt
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 19 一般には 両辺それぞれを積分すると g(x)x′ = f(t)
とすると x′ = dx dt g(x)dx = f(t)dt g(x)dx = f(t)dt + C
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 変数分離形 19 一般には 両辺それぞれを積分すると g(x)x′ = f(t)
とすると x′ = dx dt g(x)dx = f(t)dt g(x)dx = f(t)dt + C 一般解に含まれる積分定数 C は, 初期値を代入して定まり,特殊解が得られる
25 20 例題💡💡
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 21 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 21 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 として変数分離すると x′ = dx dt
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 21 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 として変数分離すると x′ = dx dt 9xdx = −4tdt
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 21 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 として変数分離すると x′ = dx dt 9xdx = −4tdt 両辺それぞれを積分すると
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 21 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 として変数分離すると x′ = dx dt 9xdx = −4tdt 両辺それぞれを積分すると 9 2 x2 = −2t2 + C0
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 21 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 として変数分離すると x′ = dx dt 9xdx = −4tdt 両辺それぞれを積分すると 9 2 x2 = −2t2 + C0 すなわち t2 9 + x2 4 = C1
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 21 を解いて ( t – x
平面の楕円群) 9x · x′ + 4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 として変数分離すると x′ = dx dt 9xdx = −4tdt 両辺それぞれを積分すると 9 2 x2 = −2t2 + C0 すなわち t2 9 + x2 4 = C1
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 22 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 一般解は t2 9 + x2 4 = C1
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 22 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 一般解は t2 9 + x2 4 = C1
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 22 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 初期値が x(3) = 2 なので t = 3 のとき x = 2 だから,代入すると C1 = 2 一般解は t2 9 + x2 4 = C1
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 例題 22 を解いて 9x · x′ +
4t = 0 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。 初期値が x(3) = 2 なので t = 3 のとき x = 2 だから,代入すると C1 = 2 一般解は t2 9 + x2 4 = C1 t2 9 + x2 4 = 2 特殊解は
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題(1) 23 微分方程式 とするときの特殊解を求めよ。 x′ = 3t2x
について x(0) = 1
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題(1) 23 微分方程式 とするときの特殊解を求めよ。 x′ = 3t2x
について x(0) = 1 とすると ,すなわち と変数分離できる x′ = dx dt dx dt = 3t2x dx x = 3t2dt
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題(1) 23 微分方程式 とするときの特殊解を求めよ。 両辺それぞれを積分すると x′ =
3t2x について x(0) = 1 とすると ,すなわち と変数分離できる x′ = dx dt dx dt = 3t2x dx x = 3t2dt ,すなわち ( は定数) ∫ dx x = ∫ 3t2dt log| x| = t3 + C C
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題(1) 24 微分方程式 とするときの特殊解を求めよ。 x′ = 3t2x
について x(0) = 1 より ( は定数) log| x| = t3 + C x = ± eCet3 C
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題(1) 24 微分方程式 とするときの特殊解を求めよ。 x′ = 3t2x
について x(0) = 1 より ( は定数) log| x| = t3 + C x = ± eCet3 C よって, をあらためて定数 とおくと,一般解は ±eC A x = Aet3
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題(1) 24 微分方程式 とするときの特殊解を求めよ。 x′ = 3t2x
について x(0) = 1 より ( は定数) log| x| = t3 + C x = ± eCet3 C よって, をあらためて定数 とおくと,一般解は ±eC A x = Aet3 初期値は なので, を代入すると x(0) = 1 t = 0, x = 1 1 = A
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題(1) 24 微分方程式 とするときの特殊解を求めよ。 x′ = 3t2x
について x(0) = 1 より ( は定数) log| x| = t3 + C x = ± eCet3 C よって, をあらためて定数 とおくと,一般解は ±eC A x = Aet3 初期値は なので, を代入すると x(0) = 1 t = 0, x = 1 1 = A よって,求める特殊解は x = et3
25 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 25 微分方程式は,関数とその微分に関する方程式 解は数ではなく関数 解ける方程式のパターンは限られている もっとも基本的なパターン 「変数分離形」