Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年度春学期 応用数学(解析)第2回 無限にも大小がある (2024. 4. 18)
Search
Akira Asano
PRO
April 03, 2024
Education
0
150
2024年度春学期 応用数学(解析)第2回 無限にも大小がある (2024. 4. 18)
関西大学総合情報学部 応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2024s/AMA/
Akira Asano
PRO
April 03, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2025年度秋学期 画像情報処理 第5回 離散フーリエ変換,フーリエ変換の実例と関連する話題 (2025. 10. 31)
akiraasano
PRO
0
7
2025年度秋学期 応用数学(解析) 第5回 微分方程式とは・変数分離形 (2025. 10. 31)
akiraasano
PRO
0
7
2025年度秋学期 応用数学(解析) 第4回 収束とは何か,ε-δ論法 (2025. 10. 17)
akiraasano
PRO
0
35
2025年度秋学期 画像情報処理 第4回 フーリエ変換とサンプリング定理 (2025. 10. 17)
akiraasano
PRO
0
13
2025年度秋学期 画像情報処理 第3回 フーリエ級数とフーリエ変換 (2025. 10. 10)
akiraasano
PRO
0
17
2025年度秋学期 応用数学(解析) 第3回 実数とは何か (2025. 10. 10)
akiraasano
PRO
0
41
2025年度秋学期 画像情報処理 講義の進め方と成績評価について (2025. 9. 26)
akiraasano
PRO
0
27
2025年度秋学期 画像情報処理 第1回 イントロダクション (2025. 9. 26)
akiraasano
PRO
0
38
2025年度秋学期 画像情報処理 第2回 結像と空間周波数,フーリエ級数 (2025. 10. 3)
akiraasano
PRO
0
37
Other Decks in Education
See All in Education
Test-NUTMEG紹介スライド
mugiiicha
0
240
Introdución ás redes
irocho
0
370
みんなのコード 2024年度活動報告書/ 2025年度活動計画書
codeforeveryone
0
360
社外コミュニティの歩き方
masakiokuda
2
210
生成AI活用セミナー/GAI-workshop
gnutar
0
130
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
3k
データで見る赤ちゃんの成長
syuchimu
0
320
中間活動報告会 人材育成WG・技術サブWG / 20250808-oidfj-eduWG-techSWG
oidfj
0
750
Node-REDで広がるプログラミング教育の可能性
ueponx
0
150
みんなのコードD&I推進レポート2025 テクノロジー分野のジェンダーギャップとその取り組みについて
codeforeveryone
0
300
(2025) L'origami, mieux que la règle et le compas
mansuy
0
150
高校におけるプログラミング教育を考える
naokikato
PRO
0
170
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
225
10k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
A Tale of Four Properties
chriscoyier
161
23k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
Practical Orchestrator
shlominoach
190
11k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Unsuck your backbone
ammeep
671
58k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Transcript
関西大学総合情報学部 浅野 晃 応用数学(解析) 2024年度春学期 第1部・「無限」の理解 / 第2回 無限にも大小がある
None
無限とは,「モノ」ではなく「コト」 🤔🤔
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「∞」という数字があるのか 3 「∞」という数字はありません 無限とは 「無限」という「モノ」があるのではなく 「無限であるコト」 数学では,
「コト」ではなく「モノ」のほうが扱いやすい。 「無限」を具体的な数字で扱うには?
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「数えられる」無限 4 自然数とは,数えるための数字 1, 2, 3, …
自然数の集合と同じ無限を 「数えられる無限」すなわち[可算無限]という そして,「無限」 その「個数」は[可算基数] ℵ0(アレフゼロ) (よく「可算無限個」という)
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「数えられる」無限 4 自然数とは,数えるための数字 1, 2, 3, …
自然数の集合と同じ無限を 「数えられる無限」すなわち[可算無限]という そして,「無限」 その「個数」は[可算基数] ℵ0(アレフゼロ) (よく「可算無限個」という) ?
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか 5 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか 5 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか 5 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか 5 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか 5 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「全単射」について 6 集合の要素間の対応関係について [全単射](bijection) 集合X 集合Y …
… 1対1に対応し, X,Yどちらにも余りがない [単射](injection) 集合X 集合Y 1対1である この例では Yに余りがあるので全射ではない [全射](surjection) 集合X 集合Y どちらにも余りはない XからYへの ? ? XからYへの この例では 1対1ではないので単射ではない
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 過不足なく1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 過不足なく1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 過不足なく1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 過不足なく1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 過不足なく1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数の基数も ℵ0 偶数 自然数 過不足なく1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, … 自然数と「個数」は同じ
None
「ホテル無限」
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ヒルベルトの「ホテル無限」 9 ホテル無限には,可算無限個の部屋がある さらに客が一人やって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • •
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ヒルベルトの「ホテル無限」 9 ホテル無限には,可算無限個の部屋がある さらに客が一人やって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • •
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ヒルベルトの「ホテル無限」 9 ホテル無限には,可算無限個の部屋がある さらに客が一人やって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • •
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ヒルベルトの「ホテル無限」 9 ホテル無限には,可算無限個の部屋がある さらに客が一人やって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • •
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ヒルベルトの「ホテル無限」 9 ホテル無限には,可算無限個の部屋がある さらに客が一人やって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • •
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ヒルベルトの「ホテル無限」 9 ホテル無限には,可算無限個の部屋がある さらに客が一人やって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • •
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ヒルベルトの「ホテル無限」 9 ホテル無限には,可算無限個の部屋がある さらに客が一人やって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • •
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ヒルベルトの「ホテル無限」 9 ホテル無限には,可算無限個の部屋がある さらに客が一人やって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • 部屋にいる客全員が 隣の部屋に移れば 1号室が空く
None
実数の基数と対角線論法 🤔🤔
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 時計の針の止まる場所 11 連続的に針が進む時計 目をつぶってボタンを押したとき ボタンを押すと,その場で針が止まる 12時から3時の間のどこかに止まる確率 =円周の1/4だから,確率も1/4
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 時計の針の止まる場所 12 では「12時ちょうど」に止まる確率は? 12時ちょうども 1時ちょうども 12時1秒ちょうども 「12時ちょうど」の幅はゼロ
→そこに止まる確率もゼロ どこでも みんな ゼロ
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 時計の針の止まる場所 12 では「12時ちょうど」に止まる確率は? 12時ちょうども 1時ちょうども 12時1秒ちょうども 「12時ちょうど」の幅はゼロ
→そこに止まる確率もゼロ どこでも みんな ゼロ なら,「12時から3時の間のどこか」もゼロじゃないの?🤔🤔
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 何がおかしいのか 13 各刻みに止まる確率はどれもゼロ 区間内の任意の位置 =1つの実数で表される角度 刻みがどんなに細かくても, 順に自然数の番号がつけられる
角度を表す実数と1対1対応がつくなら, 「区間内のどの位置に止まる確率も0」
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 何がおかしいのか 13 各刻みに止まる確率はどれもゼロ 区間内の任意の位置 =1つの実数で表される角度 刻みがどんなに細かくても, 順に自然数の番号がつけられる
角度を表す実数と1対1対応がつくなら, 「区間内のどの位置に止まる確率も0」 自然数と実数に一対一対応がつくか? つまり「実数の集合は可算基数をもつか?」
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実数は可算無限ではない 14 自然数と実数に一対一対応がつくか? つまり「実数の集合は可算基数をもつか?」
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実数は可算無限ではない 14 自然数と実数に一対一対応がつくか? つまり「実数の集合は可算基数をもつか?」 いいえ。🙅🙅
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実数は可算無限ではない 14 自然数と実数に一対一対応がつくか? つまり「実数の集合は可算基数をもつか?」 いいえ。🙅🙅 実数を1つ,2つ,3つと数えることはできない
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実数は可算無限ではない 14 自然数と実数に一対一対応がつくか? つまり「実数の集合は可算基数をもつか?」 いいえ。🙅🙅 実数を1つ,2つ,3つと数えることはできない 実数も自然数もその「個数」は無限だが,
実数は自然数よりも本質的に大きな無限
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする ⋮ 1番 2番 3番
0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする ⋮ 1番 2番 3番
0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする 0.190… ⋮ 1番 2番
3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする 0.190… 対角線上の数字を並べた実数をつくる ⋮ 1番
2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする 0.190… 対角線上の数字を並べた実数をつくる 各ケタを1ずつずらす ⋮
1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする 0.190… 対角線上の数字を並べた実数をつくる 0. 各ケタを1ずつずらす
⋮ 1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする 0.190… 対角線上の数字を並べた実数をつくる 0. 各ケタを1ずつずらす
2 ⋮ 1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする 0.190… 対角線上の数字を並べた実数をつくる 0. 各ケタを1ずつずらす
20 ⋮ 1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする 0.190… 対角線上の数字を並べた実数をつくる 0. 各ケタを1ずつずらす
201 ⋮ 1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 15 仮に,すべての実数を1番,2番,…と番号をつけて並べられるとする 0.190… 対角線上の数字を並べた実数をつくる 0. 各ケタを1ずつずらす
201… ⋮ 1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 16 すべての実数を1番,2番,…と番号をつけて並べた表 ⋮ 0. 2 0
1 … 各ケタを 1ずつずらした数 1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 16 すべての実数を1番,2番,…と番号をつけて並べた表 ⋮ 0. 2 0
1 … 各ケタを 1ずつずらした数 1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 16 すべての実数を1番,2番,…と番号をつけて並べた表 ⋮ 0. 2 0
1 … 各ケタを 1ずつずらした数 この数字は, 1番の数字とは1ケタめで, 2番の数字とは2ケタめで,… n番の数字とはnケタめで 1だけずれているので, 「すべての実数を並べた」表にない ∴矛盾 1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 カントールの対角線論法 16 すべての実数を1番,2番,…と番号をつけて並べた表 ⋮ 0. 2 0
1 … 各ケタを 1ずつずらした数 この数字は, 1番の数字とは1ケタめで, 2番の数字とは2ケタめで,… n番の数字とはnケタめで 1だけずれているので, 「すべての実数を並べた」表にない ∴矛盾 つまり 「実数は可算でない」 1番 2番 3番 0. 1 2 3 4 5 6 … 0. 8 9 3 1 2 9 … 0. 2 3 0 4 9 0 …
None
有理数の集合は可算基数をもつか (演習問題1)
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数と自然数の対応 18 有理数の集合は,可算基数をもつか 分母を横軸, 分子を縦軸とすると, 有理数は図の黒点(格子点) ※分母0の点は除く ※重複あり
分母 分子 0 1 2 3 1 2 3
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数と自然数の対応 18 有理数の集合は,可算基数をもつか 分母を横軸, 分子を縦軸とすると, 有理数は図の黒点(格子点) ※分母0の点は除く ※重複あり
分母 分子 0 1 2 3 1 2 3 すべての格子点を一筆でたどれば 自然数と一対一対応がつく👉👉可算基数をもつ
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数と自然数の対応 18 有理数の集合は,可算基数をもつか 分母を横軸, 分子を縦軸とすると, 有理数は図の黒点(格子点) ※分母0の点は除く ※重複あり
分母 分子 0 1 2 3 1 2 3 すべての格子点を一筆でたどれば 自然数と一対一対応がつく👉👉可算基数をもつ
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数は可算基数をもつから 19 有理数の「無限」と 自然数の「無限」は 同じ無限 有理数の集合は「稠密」(びっしり) 実数 の集合は「連続」(べったり) 有理数の「無限」と
実数の「無限」は 本質的に異なる無限
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数は可算基数をもつから 20 ダーツの矢(太さゼロ)を投げたら🎯🎯 時計⏰の針と同じ理屈で考えると 原点から光線(幅ゼロ)をあちこちに発射したら 的の上で当たった点の 的の中心からの距離が有理数である確率はゼロ
格子点に当たる確率はゼロ 原点 ⚡
None
ホテル無限に,無限の客 (演習問題2)
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題2 22 ホテル無限には,可算無限個の部屋がある さらに可算無限人の客がやって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • ℵ0
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題2 22 ホテル無限には,可算無限個の部屋がある さらに可算無限人の客がやって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • ℵ0 部屋にいる客全員が 2倍の番号の部屋に移れば 奇数番の室が空く
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題2 22 ホテル無限には,可算無限個の部屋がある さらに可算無限人の客がやって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • ℵ0 部屋にいる客全員が 2倍の番号の部屋に移れば 奇数番の室が空く
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題2 22 ホテル無限には,可算無限個の部屋がある さらに可算無限人の客がやって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • ℵ0 部屋にいる客全員が 2倍の番号の部屋に移れば 奇数番の室が空く
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題2 22 ホテル無限には,可算無限個の部屋がある さらに可算無限人の客がやって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • ℵ0 部屋にいる客全員が 2倍の番号の部屋に移れば 奇数番の室が空く
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題2 22 ホテル無限には,可算無限個の部屋がある さらに可算無限人の客がやって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • ℵ0 部屋にいる客全員が 2倍の番号の部屋に移れば 奇数番の室が空く
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題2 22 ホテル無限には,可算無限個の部屋がある さらに可算無限人の客がやって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • ℵ0 部屋にいる客全員が 2倍の番号の部屋に移れば 奇数番の室が空く
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題2 22 ホテル無限には,可算無限個の部屋がある さらに可算無限人の客がやって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • ℵ0 部屋にいる客全員が 2倍の番号の部屋に移れば 奇数番の室が空く
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題2 22 ホテル無限には,可算無限個の部屋がある さらに可算無限人の客がやって来たら? … 1号室 2
3 4 5 • • • • • 「ただいま満室です」 … 1号室 2 3 4 5 • • • • • • • ℵ0 部屋にいる客全員が 2倍の番号の部屋に移れば 奇数番の室が空く 奇数も可算無限個
23 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 23 無限にも,大小がある 「可算無限」 次回は,「実数」とは何か, 実数の連続性(「べったり」並んでいること)を説明します。 こういうことが不思議だと感じるのは,
ふだんは「無限」を,たかだか「大きな数」くらいにしか理解していないから🤔🤔 ハレー彗星が関心をよぶのは,周期76年が「人の一生」とほぼ同じだから それより周期の長い彗星はたくさんあるが,人は実感できない