Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年度秋学期 画像情報処理 第6回 ベクトルと行列について,高速フーリエ変換 (2024...
Search
Akira Asano
PRO
October 14, 2024
Education
0
40
2024年度秋学期 画像情報処理 第6回 ベクトルと行列について,高速フーリエ変換 (2024. 10. 25)
関西大学総合情報学部 画像情報処理(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2024a/IPPR/
Akira Asano
PRO
October 14, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2024年度秋学期 統計学 第15回 分布についての仮説を検証する - 仮説検定(2) (2025. 1. 15)
akiraasano
PRO
0
75
2024年度秋学期 統計学 第14回 分布についての仮説を検証する - 仮説検定(1) (2025. 1. 8)
akiraasano
PRO
0
78
2024年度秋学期 統計学 第13回 不確かな測定の不確かさを測る - 不偏分散とt分布 (2024. 12. 18)
akiraasano
PRO
0
95
2024年度秋学期 画像情報処理 第11回 逆投影法による再構成 (2024. 12. 13)
akiraasano
PRO
0
44
2024年度秋学期 統計学 第12回 分布の平均を推測する - 区間推定 (2024. 12. 11)
akiraasano
PRO
0
120
2024年度秋学期 統計学 第11回 分布の「型」を考える - 確率分布モデルと正規分布 (2024. 12. 4)
akiraasano
PRO
0
110
2024年度秋学期 画像情報処理 第10回 Radon変換と投影切断面定理 (2024. 12. 6)
akiraasano
PRO
0
51
2024年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2024. 11. 29)
akiraasano
PRO
0
40
2024年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2024. 11. 29)
akiraasano
PRO
0
53
Other Decks in Education
See All in Education
Why Did Douglass Change His Mind?
oripsolob
0
350
Carving the Way to Ruby Engineering
koic
3
800
Flinga
matleenalaakso
2
14k
Da Necessidade da Devoção à Virgem Santíssima
cm_manaus
0
120
地図を活用した関西シビックテック事例紹介
barsaka2
0
170
ワクワク発見資料
akenohoshi
0
170
1106
cbtlibrary
0
450
A Chatbot is Not a Search Engine (it's more like a roleplaying game)
dsalo
0
150
Ch2_-_Partie_2.pdf
bernhardsvt
0
130
Sanapilvet opetuksessa
matleenalaakso
0
31k
【お子さま向け】Amazon ECS サービスディスカバリーって知ってる?【楽しい読み聞かせ】
tubone24
7
830
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
110
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
KATA
mclloyd
29
14k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
Visualization
eitanlees
146
15k
Rails Girls Zürich Keynote
gr2m
94
13k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
9
440
4 Signs Your Business is Dying
shpigford
182
22k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
Designing Experiences People Love
moore
140
23k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
30
4.6k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Transcript
関西大学総合情報学部 浅野 晃 画像情報処理 2024年度秋学期 第2部・画像情報圧縮 / 第6回 ベクトルと行列について 高速フーリエ変換
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルと行列の考え方 2 たくさんの数の組を,ひとまとめに計算する ひとつの組がいくつの数でできていても, 同じように計算できるようにする 組の中身を意識せずにすむことによって, さらに複雑な計算を考えることができる
(現代のプログラミングも同じ考えかた)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 z = a1x1 + a2x2
この計算を
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 z = a1x1 + a2x2
この計算を z = a1 a2 x1 x2 と書く
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 z = a1x1 + a2x2
この計算を z = a1 a2 x1 x2 と書く
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 z = a1x1 + a2x2
この計算を z = a1 a2 x1 x2 と書く
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 行ベクトル z = a1x1 +
a2x2 この計算を z = a1 a2 x1 x2 と書く
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 行ベクトル z = a1x1 +
a2x2 この計算を z = a1 a2 x1 x2 と書く 列 ベ ク ト ル
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 行ベクトル z = a1x1 +
a2x2 この計算を z = a1 a2 x1 x2 と書く 列 ベ ク ト ル
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 行ベクトル z = a1x1 +
a2x2 この計算を z = a1 a2 x1 x2 と書く 列 ベ ク ト ル
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題1 4 問題 1 次のベクトルの計算をしてください。 1 2
3 4 Pause ⏸
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題1 5 問題 1 次のベクトルの計算をしてください。 1 2
3 4 (解答例) 1 2 3 4 = 1 × 3 + 2 × 4 = 3 + 8 = 11 ▪
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 z(1) = a1(1) a2(1) x1
x2 z(2) = a1(2) a2(2) x1 x2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて z(1) = a1(1) a2(1)
x1 x2 z(2) = a1(2) a2(2) x1 x2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1)
a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1)
a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1)
a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1)
a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1)
a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1)
a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2 行列
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題2 7 Pause ⏸ 問題 2 次の行列とベクトルの計算をしてください。 0
1 1 2 2 1
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題2 8 問題 2 次の行列とベクトルの計算をしてください。 0 1
1 2 2 1 (解答例) 0 1 1 2 2 1 = 0 × 2 + 1 × 1 1 × 2 + 2 × 1 = 1 4 ▪
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2) ベクトル
x1 x2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2) ベクトル
x1 x2 行列をかける a1(1) a2(1) a1(2) a2(2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2) ベクトル
x1 x2 行列をかける a1(1) a2(1) a1(2) a2(2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2) ベクトル
x1 x2 行列をかける a1(1) a2(1) a1(2) a2(2) z(1) z(2) 別のベクトルに変換
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題3 10 Pause ⏸ 問題 3 問題 2
のベクトル 2 1 と,問題 2 の計算結果のベクトルを,座標平面に図示してください。
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題3 11 点(2,1) 行列 点(1,4) 0 1
1 2 をかける O 図 2: 問題 3 の解答例. 問題 3 問題 2 のベクトル 2 1 と,問題 2 の計算結果のベクトルを,座標平面に図示してください。
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 定数倍の計算 12 s11 s12 s21 s22 a1
a2 = λ a1 a2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 定数倍の計算 12 s11 s12 s21 s22 a1
a2 = λ a1 a2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 定数倍の計算 12 の意味 s11 s12 s21 s22
a1 a2 = λ a1 a2 λa1 λa2
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 s11 s12 s21 s22 a1(1)
a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) 行列とベクトルの計算が2つ
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) 行列とベクトルの計算が2つ
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) 行列とベクトルの計算が2つ λ(1) に関する計算
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) 行列とベクトルの計算が2つ λ(1) に関する計算
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) 行列とベクトルの計算が2つ λ(1) に関する計算
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) 行列とベクトルの計算が2つ λ(1) に関する計算
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) 行列とベクトルの計算が2つ λ(1) に関する計算
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) 行列とベクトルの計算が2つ λ(1) に関する計算
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22
a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) 行列とベクトルの計算が2つ λ(1) に関する計算
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題4 14 Pause ⏸ 問題 4 次の行列と行列の計算をしてください。 0
1 1 2 2 1 1 0
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題4 15 問題 4 次の行列と行列の計算をしてください。 0 1
1 2 2 1 1 0 (解答例)右側の行列を, 2 1 と 1 0 の 2 つのベクトルに分けます。 ひとつめのベクトルに対しては 0 1 1 2 2 1 = 0 × 2 + 1 × 1 1 × 2 + 2 × 1 = 1 4
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題4 16 となり,ふたつめのベクトルに対しては 0 1 1 2
1 0 = 0 × 1 + 1 × 0 1 × 1 + 2 × 0 = 0 1 となります。よって,これらの 2 つのベクトルを並べて 0 1 1 2 2 1 1 0 = 1 0 4 1 となります。▪
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題4 16 となり,ふたつめのベクトルに対しては 0 1 1 2
1 0 = 0 × 1 + 1 × 0 1 × 1 + 2 × 0 = 0 1 となります。よって,これらの 2 つのベクトルを並べて 0 1 1 2 2 1 1 0 = 1 0 4 1 となります。▪ 0 1 1 2 2 1 1 0
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 17 s11 s12 s21 s22 a1
a2 = λ a1 a2 は,
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 17 s11 s12 s21 s22 a1
a2 = λ a1 a2 s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1 a2 . . . ap = λ a1 a2 . . . ap は,
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 18 s11 s12 s21 s22 a1(1)
a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) は,
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 18 s11 s12 s21 s22 a1(1)
a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) = a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) λ(1) 0 λ(2) ... 0 λ(p) (10) は,
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 18 s11 s12 s21 s22 a1(1)
a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2) s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) = a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) λ(1) 0 λ(2) ... 0 λ(p) (10) は, なんのために???
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19
s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) = a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) λ(1) 0 λ(2) ... 0 λ(p) (10)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19
s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) = a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) λ(1) 0 λ(2) ... 0 λ(p) (10) S
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19
s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) = a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) λ(1) 0 λ(2) ... 0 λ(p) (10) S P
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19
s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) = a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) λ(1) 0 λ(2) ... 0 λ(p) (10) S P P
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19
s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) = a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) λ(1) 0 λ(2) ... 0 λ(p) (10) S P P Λ
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19
s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) = a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) λ(1) 0 λ(2) ... 0 λ(p) (10) SP = PΛ S P P Λ
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19
s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) = a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p) λ(1) 0 λ(2) ... 0 λ(p) (10) SP = PΛ 複雑な計算を,あたかも数の 計算のように単純に考える S P P Λ
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ただし 20 行列の積は,交換ができない ABとBAが等しいとは限らない
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義
プリ 行列A
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義
プリ 行列A a b c d 講義 プリ
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義
プリ 行列A a b c d 講義 プリ
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義
プリ 行列A a b c d 講義 プリ a c b d を使
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義
プリ 行列A 転置行列 a b c d 講義 プリ a c b d を使
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義
プリ 行列A 転置行列 a b c d 講義 プリ a c b d を使 tA, At, AT , A
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 ある行列とその転置行列が同じとき,対称行列という a b c d
講義 プリ 行列A 転置行列 a b c d 講義 プリ a c b d を使 tA, At, AT , A
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題5 22 Pause ⏸ 問題 5 1. 1
2 0 1 の転置行列を求めてください。 2. 1 2 0 1 と 1 0 0 1 は,それぞれは対称行列ですか。
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題5 23 (解答例) 1. 1 0 2
1 です。 2. 1 2 0 1 の転置行列は 1 0 2 1 で,もとの行列とは異なるので,対称行列ではありません。一方, 1 0 0 1 の転置行列は 1 0 0 1 で,もとの行列と同じなので,これは対称行列です。▪
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない となるA-1を,Aの逆行列という AA−1 = A−1A
= I
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない となるA-1を,Aの逆行列という AA−1 = A−1A
= I 単位行列 (かけ算をしても何もおこらない)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない となるA-1を,Aの逆行列という AA−1 = A−1A
= I 単位行列 (かけ算をしても何もおこらない) 1 0 0 1
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない となるA-1を,Aの逆行列という AA−1 = A−1A
= I 単位行列 (かけ算をしても何もおこらない) 1 0 0 1 数の場合は 行列の場合は a × 1 a (逆元) = 1 (単位元) AA−1 (逆行列) = I(単位行列)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 直交行列 25 a b c d 講義
プリ 直交行列の列ベクトルどうしは直交している 逆行列が転置行列と同じであるような行列を直交行列という
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 直交行列 25 a b c d 講義
プリ 直交行列の列ベクトルどうしは直交している 直交した2つのベクトルは, 直交行列で変換されても直交している 逆行列が転置行列と同じであるような行列を直交行列という
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 直交行列 25 a b c d 講義
プリ 直交行列の列ベクトルどうしは直交している 直交した2つのベクトルは, 直交行列で変換されても直交している 逆行列が転置行列と同じであるような行列を直交行列という
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 直交行列 25 a b c d 講義
プリ 直交行列の列ベクトルどうしは直交している 直交行列で変換 直交行列で変換 直交した2つのベクトルは, 直交行列で変換されても直交している 逆行列が転置行列と同じであるような行列を直交行列という
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題6 26 Pause ⏸ 問題 6 R =
1 √ 2 1 1 −1 1 が直交行列であることを確かめてください。
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題6 27 (解答例)次のとおりです。 R R = 1
√ 2 1 −1 1 1 1 √ 2 1 1 −1 1 = 1 2 1 × 1 + (−1) × (−1) 1 × 1 + (−1) × 1 1 × 1 + 1 × (−1) 1 × 1 + 1 × 1 = 1 0 0 1 = I RR = 1 √ 2 1 1 −1 1 1 √ 2 1 −1 1 1 = 1 2 1 × 1 + 1 × 1 (−1) × 1 + 1 × 1 1 × (−1) + 1 × 1 (−1) × (−1) + 1 × 1 = 1 0 0 1 = I ▪
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題7 28 Pause ⏸ 問題 7 1. ベクトル
1 √ 2 1 −1 と 1 √ 2 1 1 が直交していることを,図に描いて確認してください。 2. 座標軸の x 軸はベクトル 1 0 で,y 軸はベクトル 0 1 で,それぞれ表されます。これらのベク トルを直交行列 1 √ 2 1 1 −1 1 で変換して,変換後のベクトルも直交していることを図で確認して ください。
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題7 29 (解答例) 1.
図 4 のとおりで,この 2 つのベクトルは直交しています。 点 O 点 ( 1 2 , 1 2 ) ( 1 2 , − 1 2 ) 図 4: 問題 7-1.
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題7 30 行列 をかけると 直交のまま回転 O 1
2 ( 1 1 1 −1) ( 1 0) ( 0 1) 図 5: 問題 7-2. 2. x 軸をこの行列で変換すると 1 √ 2 1 1 −1 1 1 0 = 1 √ 2 − 1 √ 2 で,y 軸をこの行列で変換すると 1 √ 2 1 1 −1 1 0 1 = 1 √ 2 1 √ 2 です。つまり,この行列の 2 つの列ベクトルがそのまま取り出されます(上で出てきた「単位行 列」を思い出してください) 。したがって,図 5 のように,x, y 軸が,直交したまま 45 度回転した ものに変換されたということができます。▪
20 31
20 31 高速フーリエ変換🤔🤔
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 「高速」フーリエ変換とは 32 高速フーリエ変換(Fast Fourier Transformation, FFT) 離散フーリエ変換の計算に含まれる掛け算の回数を減らす工夫
コンピュータでは,掛け算は足し算に比べて時間がかかるので 掛け算を減らすと全体の計算にかかる時間を短くできる 例えば 5 × 4 + 3 × 5 5 × (4 + 3) 掛け算は2回 掛け算は1回
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 4点だけの信号の離散フーリエ変換 33 4点だけの信号(N = 4)の離散フーリエ変換を これを行列で書いてみる 離散フーリエ変換の式は
1つの を計算するのに,掛け算を4回 U( ) 全部で 回の掛け算😵😵 42 = 16 U(k) = 3 n=0 u(n) exp −i2π k 4 n (k = 0, 1, . . . , 3)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列で表すと 34 行列で表すと とおいて W ≡ exp
−i 2π 4 U(0) U(1) U(2) U(3) = W0·0 W0·1 W0·2 W0·3 W1·0 W1·1 W1·2 W1·3 W2·0 W2·1 W2·2 W2·3 W3·0 W3·1 W3·2 W3·3 u(0) u(1) u(2) u(3) すなわち U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9 u(0) u(1) u(2) u(3)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える
U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9 u(0) u(1) u(2) u(3) U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9 u(0) u(2) u(1) u(3)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える
U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9 u(0) u(1) u(2) u(3) U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9 u(0) u(2) u(1) u(3)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える
U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9 u(0) u(1) u(2) u(3) U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9 u(0) u(2) u(1) u(3)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える
U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9 u(0) u(1) u(2) u(3) U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9 u(0) u(2) u(1) u(3)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える
U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9 u(0) u(1) u(2) u(3) U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9 u(0) u(2) u(1) u(3)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 指数関数/三角関数の性質を使って 36 という周期関数の性質があるので W4 = exp −i2π
4 4 = 1 = W0 U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W2 W1 W3 W0 W0 W2 W2 W0 W2 W3 W5 u(0) u(2) u(1) u(3) U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9 u(0) u(2) u(1) u(3) は, と表せる
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 2つの行列の積に分ける 37 の右辺の行列を,2つに分ける
U(0) U(1) U(2) U(3) = W0 W0 W0 W0 W0 W2 W1 W3 W0 W0 W2 W2 W0 W2 W3 W5 u(0) u(2) u(1) u(3) と表せる U(0) U(1) U(2) U(3) = W0 W0 W0W0 W0W0 W0 W2 W1W0 W1W2 W0 W0 W2W0 W2W0 W0 W2 W3W0 W3W2 u(0) u(2) u(1) u(3) = 1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3 W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2 u(0) u(2) u(1) u(3)
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは
U(0) U(1) U(2) U(3) = 1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3 W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2 u(0) u(2) u(1) u(3) W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは
U(0) U(1) U(2) U(3) = 1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3 W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2 u(0) u(2) u(1) u(3) W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは
U(0) U(1) U(2) U(3) = 1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3 W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2 u(0) u(2) u(1) u(3) W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回 掛け算4回
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは
U(0) U(1) U(2) U(3) = 1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3 W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2 u(0) u(2) u(1) u(3) W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回 掛け算4回 掛け算4回
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは
U(0) U(1) U(2) U(3) = 1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3 W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2 u(0) u(2) u(1) u(3) W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回 掛け算4回 掛け算4回 掛け算の回数は 回 4 + 4 × 2 = 12
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは
U(0) U(1) U(2) U(3) = 1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3 W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2 u(0) u(2) u(1) u(3) W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回 掛け算4回 掛け算4回 掛け算の回数は 回 4 + 4 × 2 = 12 元の 回から減った💡💡 42 = 16
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 N=8の場合は 39 これらは,N=2のフーリエ変換 W0 W0 W0 W2
u(0) u(2) W0 W0 W0 W2 u(1) u(3) N=8 のときは N=8 のフーリエ変換 → 掛け算8回 + 2 × ( N=4 のフーリエ変換) → 掛け算8回 + 2 × (掛け算4回 + 2 × ( N=2 のフーリエ変換 ) ) → 掛け算8回 + 掛け算8回 + 2 × 2 × 掛け算4回
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 N=8の場合は 39 これらは,N=2のフーリエ変換 W0 W0 W0 W2
u(0) u(2) W0 W0 W0 W2 u(1) u(3) N=8 のときは N=8 のフーリエ変換 → 掛け算8回 + 2 × ( N=4 のフーリエ変換) → 掛け算8回 + 2 × (掛け算4回 + 2 × ( N=2 のフーリエ変換 ) ) → 掛け算8回 + 掛け算8回 + 2 × 2 × 掛け算4回 元々 回の掛け算が必要 82 = 64
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 N=8の場合は 39 これらは,N=2のフーリエ変換 W0 W0 W0 W2
u(0) u(2) W0 W0 W0 W2 u(1) u(3) N=8 のときは N=8 のフーリエ変換 → 掛け算8回 + 2 × ( N=4 のフーリエ変換) → 掛け算8回 + 2 × (掛け算4回 + 2 × ( N=2 のフーリエ変換 ) ) → 掛け算8回 + 掛け算8回 + 2 × 2 × 掛け算4回 掛け算の回数は 回💡💡 8 + 8 + 4 × 4 = 32 元々 回の掛け算が必要 82 = 64
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 「分割統治戦略」 40 このように,問題を半分,半分,半分,…に分けていく方法は, 他にもいろいろなところで使われている (「クイックソート」等) 一般に,N点のフーリエ変換には掛け算が 回必要だったのが,
段階に分割され,それぞれで 回の掛け算を行うので(概ね), に比例した回数で済む N2 log2 N N N log2 N
20 41
20 41 さて,第2部の本題へ💡💡
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまり変わらない部分
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまり変わらない部分 なんて,ある?
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまり変わらない部分 なんて,ある?
直交変換すると, 「大まかな部分」「細かい部分」が別に なるように組み替えられる
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまりかわらない部分は,ごまかす どの画像でもあまり変わらない部分
なんて,ある? 直交変換すると, 「大まかな部分」「細かい部分」が別に なるように組み替えられる
42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまりかわらない部分は,ごまかす フーリエ変換も,行列で表すと直交変換の一種
どの画像でもあまり変わらない部分 なんて,ある? 直交変換すると, 「大まかな部分」「細かい部分」が別に なるように組み替えられる