Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Classical analog for exotic quantum holonomy

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for Atushi TANAKA Atushi TANAKA
September 23, 2017

Classical analog for exotic quantum holonomy

(This presentation is in Japanese)
題目:新奇な量子ホロノミーの古典対応物
日本物理学会 2017年秋季大会 23pJ24-10 での講演スライド

Avatar for Atushi TANAKA

Atushi TANAKA

September 23, 2017
Tweet

More Decks by Atushi TANAKA

Other Decks in Research

Transcript

  1. 1 / 15 ৽حͳྔࢠϗϩϊϛʔͷݹయରԠ෺ Classical analog for exotic quantum holonomy

    ాதಞ࢘ (ट౎େཧ޻)ɺશ୎थ (ߴ஌޻Պେ) Atushi Tanaka (TMU) and Taksu Cheon (KUT) 2017-09-23 ೔ຊ෺ཧֶձ 2017 ೥ळقେձ ؠखେֶʢ্ాΩϟϯύεʣ 23pJ24-10
  2. ͸͡Ίʹ 3 / 15 ৽حͳྔࢠϗϩϊϛʔ அ೤αΠΫϧʹର͢Δ (ٖ) ݻ༗ΤωϧΪʔ΍ݻ༗ۭؒͷඇࣗ໌ͳԠ౴ɻ (1) அ೤αΠΫϧ

    C ʹԊͬͯ (ٖ) ݻ༗Τω ϧΪʔΛ௥੻ͨ݁͠Ռɺݩʹ໭Βͳ͍͜ͱɻ λ 0 2π E E1 E2 E3 ਤ. λ ͕ 2π पظͷ৔߹ (2) ͢Δͱɺఆৗঢ়ଶΛஅ೤ดܦ࿏ C ʹԊͬͯ࣌ؒൃలͤ͞Δͱ ⟨࢝ঢ়ଶ|ऴঢ়ଶ⟩ = 0 ͱͳΔɻ Ref. AT and TC, ෺ཧֶձࢽ 4 ݄߸ (2017)ɻ
  3. ઢܗΩοΫυεϐϯͰͷݫີͳྫ 6 / 15 ݹయઢܗΩοΫυεϐϯ εϐϯ S ʹ੩࣓৔ͱύϧε࣓৔ (पظ T)

    ΛҹՃɿ H(t) = B(t)·S, ͜͜Ͱ B(t) ≡ ωe z +λn∑ n δ(t −nT). n (୯ҐϕΫτϧ) ͱ λ ͸ύϧε࣓৔ͷํ޲ͱڧ͞ɻϙΞϯΧϨࣸ૾͸ɿ S′ = Mλ S, Mλ ͸ 3x3 ௚ަߦྻͰ͋Γճసߦྻͷੵʹ෼ղͰ͖Δ: Mλ = R(e z,ωT)R(n,λ) ͜͜ͰɺR(n,λ) ͸ճస࣠ n ʹ͍ͭͯ֯౓ λ ͷճసɻ Mλ+2π = Mλ ͔Βɺλ Λ 0 ͔Β 2π ʹ૿Ճͤ͞Δดܦ࿏ C Λௐ΂Δɻ
  4. ઢܗΩοΫυεϐϯͰͷݫີͳྫ 7 / 15 ݹయઢܗΩοΫυεϐϯɿ਺஋ྫ ดܦ࿏ C ʹԊͬͯ λ Λ

    0 ͔Β 2π ʹஅ೤తʹ૿΍ͨ͠৔߹ɻ ਤͷԣ࣠͸ํҐ֯ q ≡ arctan(Sy /Sx ). ਖ਼४ڞ໾ͳӡಈྔ p ≡ Sz ͕ॎ࣠ɻ அ೤αΠΫϧ C ʹΑͬͯɺτʔϥε͸ผͷτʔϥεʹҠͬͨɻ
  5. ઢܗΩοΫυεϐϯͰͷݫີͳྫ 8 / 15 આ໌ 1: ճస࣠ͱճస֯΁ͷ෼ղͷᐆດ͔͞Β ઢܗΩοΫυεϐϯಛ༗ͷॳ౳తͳઆ໌ɻ (1) ઢܗͳͷͰϙΞϯΧϨࣸ૾͸

    Mλ = R(l λ ,∆λ ) ͱ Ͱ͖Δɻ͜͜Ͱஅ೤తͳճస࣠ l λ ͱճస֯ ∆λ Λಋ ೖͨ͠ɻ͜ΕΒ͸ λ ʹ͍ͭͯ࿈ଓɻ (2) ௚઀తͳܭࢉ͔Β l 2π = −l 0, ∆2π = 2π −∆0. ͭ ·Γɺ͜ΕΒ͸ λ ʹ͍ͭͯ 2π पظͰ͸ແ͍ɻ͜Ε ͸ Mλ+2π = Mλ ͱໃ६͠ͳ͍͜ͱʹ஫ҙ (ӈਤ)ɻ (3) M0 ͷݻఆ఺ l 0 ͸அ೤αΠΫϧ C ͷ݁Ռͱͯ͠ −l 0 ʹҠΔɻτʔϥεͷҠಈ΋ಉ༷ɻ ∆0 2π − ∆0
  6. ઢܗΩοΫυεϐϯͰͷݫີͳྫ 9 / 15 આ໌ 2: spin-1 2 ͰͷݫີͳྔࢠݹయରԠ εϐϯ-1

    2 ಛ༗ͷઆ໌ɻ ͜ͷͱ͖ྔࢠܥͷظ଴஋ͷӡಈํఔࣜͱݹయܥͷӡಈํఔࣜ͸ಉ͡ܗɿ d dt S = B(t)×S (͍ΘΏΔϒϩοϗํఔࣜ). ͜ΕͱɺྔࢠܥͰஅ೤αΠΫϧ C ͕৽حͳྔࢠϗϩϊϛʔΛى͜͢͜ͱ ͔ΒɺݹయܥͰ΋τʔϥε͕Ҡಈ͢Δɻ ͳ͓ɺྔࢠܥͷϑϩέ࡞༻ૉ͕ C Λดܦ࿏ʹ࣋ͭͨΊʹ͸ɺ͜ͷྫͷݹయܥͷ ϋϛϧτχΞϯʹʮ͓·͚ʯ͕ඞཁ (AT and Miyamoto 2007): Hྔࢠ(t) = Hݹయ(t)+ 1 2 ¯ hλ ∑ n δ(t −nT).
  7. ઢܗΩοΫυεϐϯͰͷݫີͳྫ 10 / 15 આ໌ 3: Ґ૬زԿֶతͳઆ໌ʢγφϦΦʣ ͜ͷܥͷτʔϥεશͯ (༿૚ߏ଄) Λߟ͑Δɻ͋Δτʔϥε͔Βग़ൃͯ͠ɺ

    அ೤αΠΫϧͰͨͲΓ͖ͭಘΔͷ͸ɺ࡞༻ม਺ I = τʔϥε p dq ͷ஋͕ಉ ͡τʔϥεͷΈɻ ͪͳΈʹɺεϐϯͰ͸ I ∝ ʢτʔϥε͕ுΔཱମ֯ʣͱͰ͖Δɻ ઢܗΩοΫυεϐϯͰ͸ɺ͜ͷΑ͏ͳτʔϥε͸ࣗ෼ ΛؚΊೋͭͷΈ (ॖୀ͠ಘΔ͕ྫ֎త)ɻ ͜ͷτʔϥεͷ૊͸ඃ෴ۭؒΛͳ͢ɻ͢Δͱɺ৽حͳ ྔࢠϗϩϊϛʔͷҐ૬زԿֶతͳఆࣜԽ (AT and TC 2015) Λར༻Ͱ͖Δɻྫ͑͹Ұ఺ͱϗϞτϐοΫͳஅ ೤αΠΫϧ͸τʔϥεΛҠಈͤ͞Δ͜ͱ͸ෆՄೳɻ
  8. ඇઢܗΩοΫυεϐϯͰͷ਺஋ྫ 12 / 15 ඇઢܗΩοΫυεϐϯ ۙՄੵ෼ܥͰͷྫΛ঺հ͢ΔɻۙՄੵ෼ܥʹ͸Ұൠతͳஅ೤ఆཧ͕ແ͍ ͜ͱʹ஫ҙɻ H(t) = B(t)·S

    ͱͯ͠ɺB(t) ͕ऑ͘ Sz ʹґଘ͢Δ৔߹Λߟ͑Δ: H(t) = [ ωSz + 1 2 kS2 z ] +λn·S∑ n δ(t −nT). cf. Haake, K´ us and Scharf 1987. ϙΞϯΧϨࣸ૾͸ඇઢܗʹͳΔ͕ɺλ ͷपظੑ͸มΘΒͳ͍ͷͰಉ͡அ ೤αΠΫϧ C Λ࢖͏ɻ
  9. ඇઢܗΩοΫυεϐϯͰͷ਺஋ྫ 13 / 15 ඇઢܗ ΩοΫυεϐϯɿ਺஋ྫ (k = 0.1) C

    ʹԊͬͨஅ೤తͳ࣌ؒൃలɻ͜͜Ͱ (q,p) = (arctan(Sy /Sx ),Sz). அ೤αΠΫϧ C ʹΑͬͯɺτʔϥε͸ผͷτʔϥεͷۙ͘ʹҠͬͨɻ
  10. ·ͱΊ 14 / 15 ·ͱΊ ▶ ৽حͳྔࢠϗϩϊϛʔͷݹయՄੵ෼ܥͰͷରԠ෺Λಘͨɻ͢ͳΘͪɺ அ೤αΠΫϧ C ʹΑͬͯɺݹయܥͷτʔϥε͕ผͷτʔϥεʹҠΔ

    Α͏ͳྫΛݟ͍ͩͨ͠ɻ ▶ ઢܗΩοΫυεϐϯͰͷݫີͳྫʹ͍ͭͯɺࡾͭͷղऍΛ༩͑ͨ (ճసߦྻ͔Βɺεϐϯ-1/2 ͷྔࢠݹయରԠɺҐ૬زԿֶతͳղऍ)ɻ ▶ ඇՄੵ෼ܥͷ਺஋ྫΛࣔͨ͠ɻ [͜Ε͸Մੵ෼ۙࣅͰղऍͰ͖ΔʢՄੵ෼ۙࣅʹ͍ͭͯ͸ྫ͑͹ɺ Hanada, Shudo and Ikeda, PRE 2015ʣ ɻ]
  11. ·ͱΊ 15 / 15 ల๬ ۩ମྫΛ૿΍͢ Euler top, αΠΫϩτϩϯӡಈͷ֦ு౳ɻ Ґ૬زԿֶతͳղऍͷ੔උ

    ʮ༿૚ߏ଄ͷύϥϝʔλʔมܗʹର͢ΔϞϊυϩϛʔʯͱղऍͰ͖ Δͱ༧૝ɻ ࡞༻ม਺ͷ஋ΛมԽͤ͞Δஅ೤αΠΫϧ͸ଘࡏ͢Δ͔ʁ ৽حͳྔࢠϗϩϊϛʔ͔Β͸ଘࡏͯ͠ ΋ྑͦ͞͏͕ͩɺ͍·ͷͱ͜Ζଘ൱͸ ෆ໌ɻ C | 1 | 0 q p q p