(Bi, Bf) ͕ಉ͡Ͱɺஅతͳ࣌ؒൃలͷ݁Ռ͕ҟͳΔ O Bi Bf Bx By ܦ࿏্Ͱͷஅঢ়ଶͷεϐϯظ (Bloch vector)ɻݪʹ disclination (Ґ૬ܽؕͷҰछ) ͕͋Δɻ ੩࣓ B ԼͷεϐϯʹपظܸྗΛҹՃ: H(t) ≡ B·σ 2 +λ | ↓ ⟩⟨ ↓ | ∑ ∞ m=−∞ δ(t−m). ରԠ͢Δϑϩέԋࢉࢠ U = e−iλ |↓⟩⟨↓|e−iB·σ/2. ͜͜Ͱ λ = tan−1(By/Bx) ͱ͢Δͱɺ U (Bx,By)-໘ͰҰՁɻ Ref. Combescure, JSP (1990); Milek and Seba, PRA (1990); AT and Miyamoto, PRL (2007); AT and Cheon, PLA (2015).
∼ C′ ͷͱ͖ (C ͱ C′ ͕ϗϞτϐʔಉ) ࢝ঢ়ଶ͕ಉ͡ͳΒऴঢ়ଶಉ͡ɻ |0 |a C C (∼ C) C ≁ C′ ͷͱ͖ P ͷҙͷดܦ࿏͕ՄॖͳΒɺऴঢ়ଶҟ ͳΔɻ(˞ Մॖ = ҰͱϗϞτϐοΫ) ͨͩ͠ɺҰൠʹ P ্ͷඇՄॖͳดܦ࿏ ͷͨΊʹऴঢ়ଶ͕ಉ͡ʹͳΓಘΔ (ޙड़)ɻ |0 |a |b C C (∼ C) ?
ϕ[C] (p) p ɺύϥϝʔλۭؒ M ্ͷܦ࿏ C ʹԊͬͨஅతͳ࣌ؒൃలʹै͏ɻ p ͷيɺC ͷ P ͷ࣋ͪ͋͛ C ͱΈͳͤΔɻ cf. ྔࢠϗϩϊϛʔ (ϕϦʔҐ૬) ͷ Simon Aharanov-Anandan ͷఆࣜԽɻ Fi Ff λi λf C p φC (p) C ϕC(p) Λʮॳظ p Λ༩͑ͨͱ͖ͷ C ͷऴʯͱ͢Δɻͨͩ͠ɺC ∼ C′ ͳΒ ϕC = ϕC′ ͳͷͰɺ͜ΕΛ ϕ[C] ͱه͢ɻ λ U p1 U1 p2 U2 Fλ ࣹӨ π : P → M ඃ෴ࣸ૾ͷެཧ Λຬͨ͢ɻඃ෴ۭؒߏ܈͕ࢄ తͳϑΝΠόʔଋͱΈͳͤΔɻ ࠓͷʮϕ[C] ΛܾΊΔͷܦ࿏ C ͷͲͷੑ࣭͔ʁʯͱՁɻ
arXiv:1512.06983 (2015) (to appear in Functional Analysis and Operator Theory for Quantum Physics. A Festschrift in Honor of Pavel Exner, J. Dittrich, H. Kovaˇ r´ ık and A. Laptev eds. (Europ. Math. Soc. Publ. House, 2016)). [2] AT and T. Cheon, PLA 379, 1693 (2015). [3] H. Mehri-Dehnavi and A. Mostafazadeh, JMP 49, 082105 (2008). [4] N. Yonezawa, AT and T. Cheon, PRA 87, 062113 (2013). ˞ ϙελʔൃද࣌ʹهͨ͠ʮలʯׂѪ͠·ͨ͠ɻ