Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ナイーブベイズ分類機、SVM
Search
Ayumu
January 31, 2019
Technology
0
150
ナイーブベイズ分類機、SVM
長岡技術科学大学
自然言語処理研究室 守谷歩
Ayumu
January 31, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
180
マルチモーダル学習
ayumum
0
180
B3ゼミ 自然言語処理におけるCNN
ayumum
0
120
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
130
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
210
Other Decks in Technology
See All in Technology
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
240
TED_modeki_共創ラボ_20251203.pdf
iotcomjpadmin
0
150
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
200
SQLだけでマイグレーションしたい!
makki_d
0
1.2k
特別捜査官等研修会
nomizone
0
560
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
150
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
120
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
220
[Data & AI Summit '25 Fall] AIでデータ活用を進化させる!Google Cloudで作るデータ活用の未来
kirimaru
0
3.8k
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.8k
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
440
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
220
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
Thoughts on Productivity
jonyablonski
73
5k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
280
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
17
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
0
170
First, design no harm
axbom
PRO
1
1.1k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Become a Pro
speakerdeck
PRO
31
5.7k
Transcript
ナイーブベイズ、SVM 長岡技術科学大学 自然言語処理研究室 守谷 歩
ナイーブベイズ分類器 ベイズの定理 目的:事例dに対してP(c|d)が最大となるクラス ∈ を出 力する。この確率P(c|d)を求める。 ベイズの定理 = () P(d)はクラスcに依存しない。⇒P(c),P(d|c)を考えればよい。
これらを最大にするクラスCmaxは = arg max () = arg max
ベイズの定理 言語処理では事象dは文書データなのでデータが膨大 ⇒すべてのdについてのP(c|d)を求めるのは効率的でない 文書にモデルを仮定してP(d|c)の値を求める。 モデル ⚫多変数ベルヌーイモデル ⚫多項モデル
多変数ベルヌーイモデル クラスcが与えられているとき単語wの生起確率 , , 1 − , 1−, 語彙Vでの文書dの生起確率 =
ς∈ , , 1 − , 1−, ナイーブベイズ分類器の多変数ベルヌーイモデル () = ς∈ , , 1 − , 1−,
例 強い肯定表現や強い否定表現の文書例で分類器を考える。 肯定T d1= “True True True False” d2= “Not
agree ” d3= “True agree Not True” 否定F d1= “Not False Not True” d2= “Not True False” d3= “agree Not False True”
多項モデル クラスcが与えられているとき、文書d内で単語が発生確率wで, 回 発生する確率 (σ ,)! ς∈ ,! ς∈ ,
, 語彙Vでの単語が発生確率wで, 回発生する確率 = ( = σ , ) (σ ,)! ς∈ ,! ς∈ , , ナイーブベイズ分類器の多項ベルヌーイモデル () = (σ , ) (σ ,)! ς∈ ,! ς∈ , ,
例 強い肯定表現や強い否定表現の文書例で分類 器を考える。 肯定T d1= “True True True False” d2=
“Not agree ” d3= “True agree Not True” 否定F d1= “Not False Not True” d2= “Not True False” d3= “agree Not False True” 先ほど求めた文書数 NT=3 NF=3 Ntrue,T=2 Ntrue,F=3 Nfalse,T=1 Nfalse,F=3 Nnot,T=2 Nnot,F=3 Nagree,T=2 Nagree,F=1
サポートベクターマシン(SVM) ⚫線形2値分類器であり、クラスが2である問題に使われる。 ⚫訓練データD={(x1,y1),(x2,y2),・・・,(xd,yd)}で和えられてるとき、 xは事例の素性ベクトル、yはクラスラベルである。正例、負例 をそれぞれ1,-1とする。 ⚫分離平面の方向ベクトルwと切片bをパラメータとして = ∗ − ≥
0:正クラス < 0:負クラス
マージン最大化(2次元空間)
多値分類器 1. One-versus-rest法 2. ペアワイズ法