Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ナイーブベイズ分類機、SVM
Search
Ayumu
January 31, 2019
Technology
0
150
ナイーブベイズ分類機、SVM
長岡技術科学大学
自然言語処理研究室 守谷歩
Ayumu
January 31, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
180
マルチモーダル学習
ayumum
0
180
B3ゼミ 自然言語処理におけるCNN
ayumum
0
120
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
130
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
210
Other Decks in Technology
See All in Technology
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
180
日本Rubyの会: これまでとこれから
snoozer05
PRO
6
240
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
440
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
240
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
5
2.1k
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
510
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
140
【開発を止めるな】機能追加と並行して進めるアーキテクチャ改善/Keep Shipping: Architecture Improvements Without Pausing Dev
bitkey
PRO
1
130
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
260
ESXi のAIOps だ!2025冬
unnowataru
0
370
"人"が頑張るAI駆動開発
yokomachi
1
610
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
240
Featured
See All Featured
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.8k
Un-Boring Meetings
codingconduct
0
160
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
4 Signs Your Business is Dying
shpigford
186
22k
Raft: Consensus for Rubyists
vanstee
141
7.3k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
81
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
94k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
First, design no harm
axbom
PRO
1
1.1k
Transcript
ナイーブベイズ、SVM 長岡技術科学大学 自然言語処理研究室 守谷 歩
ナイーブベイズ分類器 ベイズの定理 目的:事例dに対してP(c|d)が最大となるクラス ∈ を出 力する。この確率P(c|d)を求める。 ベイズの定理 = () P(d)はクラスcに依存しない。⇒P(c),P(d|c)を考えればよい。
これらを最大にするクラスCmaxは = arg max () = arg max
ベイズの定理 言語処理では事象dは文書データなのでデータが膨大 ⇒すべてのdについてのP(c|d)を求めるのは効率的でない 文書にモデルを仮定してP(d|c)の値を求める。 モデル ⚫多変数ベルヌーイモデル ⚫多項モデル
多変数ベルヌーイモデル クラスcが与えられているとき単語wの生起確率 , , 1 − , 1−, 語彙Vでの文書dの生起確率 =
ς∈ , , 1 − , 1−, ナイーブベイズ分類器の多変数ベルヌーイモデル () = ς∈ , , 1 − , 1−,
例 強い肯定表現や強い否定表現の文書例で分類器を考える。 肯定T d1= “True True True False” d2= “Not
agree ” d3= “True agree Not True” 否定F d1= “Not False Not True” d2= “Not True False” d3= “agree Not False True”
多項モデル クラスcが与えられているとき、文書d内で単語が発生確率wで, 回 発生する確率 (σ ,)! ς∈ ,! ς∈ ,
, 語彙Vでの単語が発生確率wで, 回発生する確率 = ( = σ , ) (σ ,)! ς∈ ,! ς∈ , , ナイーブベイズ分類器の多項ベルヌーイモデル () = (σ , ) (σ ,)! ς∈ ,! ς∈ , ,
例 強い肯定表現や強い否定表現の文書例で分類 器を考える。 肯定T d1= “True True True False” d2=
“Not agree ” d3= “True agree Not True” 否定F d1= “Not False Not True” d2= “Not True False” d3= “agree Not False True” 先ほど求めた文書数 NT=3 NF=3 Ntrue,T=2 Ntrue,F=3 Nfalse,T=1 Nfalse,F=3 Nnot,T=2 Nnot,F=3 Nagree,T=2 Nagree,F=1
サポートベクターマシン(SVM) ⚫線形2値分類器であり、クラスが2である問題に使われる。 ⚫訓練データD={(x1,y1),(x2,y2),・・・,(xd,yd)}で和えられてるとき、 xは事例の素性ベクトル、yはクラスラベルである。正例、負例 をそれぞれ1,-1とする。 ⚫分離平面の方向ベクトルwと切片bをパラメータとして = ∗ − ≥
0:正クラス < 0:負クラス
マージン最大化(2次元空間)
多値分類器 1. One-versus-rest法 2. ペアワイズ法