Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tokyo.R #98 Rを学ぶのは難しい
Search
bob3bob3
April 13, 2022
Programming
3
3.3k
Tokyo.R #98 Rを学ぶのは難しい
R言語を学ぶのは難しい、という話のLT。
(2022/04/17: 誤記を修正)
bob3bob3
April 13, 2022
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
700
RでPSM分析
bob3bob3
1
310
Rでコンジョイント分析 2024年版
bob3bob3
0
1.7k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
bob3bob3
0
1.3k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
600
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
540
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
610
qeMLパッケージの紹介
bob3bob3
0
2.2k
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
600
Other Decks in Programming
See All in Programming
AI時代に必須!状況言語化スキル / ai-context-verbalization
minodriven
2
250
なんでRustの環境構築してないのにRust製のツールが動くの? / Why Do Rust-Based Tools Run Without a Rust Environment?
ssssota
14
47k
EMこそClaude Codeでコード調査しよう
shibayu36
0
510
Designing Repeatable Edits: The Architecture of . in Vim
satorunooshie
0
190
AsyncSequenceとAsyncStreamのプロポーザルを全部読む!!
s_shimotori
1
190
品質ワークショップをやってみた
nealle
0
720
Google Opalで使える37のライブラリ
mickey_kubo
3
170
Leading Effective Engineering Teams in the AI Era
addyosmani
7
680
SODA - FACT BOOK(JP)
sodainc
1
9k
Software Architecture
hschwentner
6
2.4k
理論と実務のギャップを超える
eycjur
0
200
Go言語はstack overflowの夢を見るか?
logica0419
0
660
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
5.9k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
The Cult of Friendly URLs
andyhume
79
6.6k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Building an army of robots
kneath
306
46k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
900
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
Rを学ぶのは難しい Tokyo.R #98 (2022/04/16) @bob3bob3
Rを学ぶのは難しい • これまでRを使ってきて、個人的に「Rを身に付けるのは難しい……」と思った点を 述べていきます。 • これからRを学ぼうとする人たちも、こうしたハマりポイントを事前に把握しておけば 立ち直りも早いかと思います。 • ベテラン勢はTwitterでツッコミをヨロシク。
★CUIが難しい • 統計解析ソフトとして考えたとき、 ExcelやSPSS、JMPのようなGUI ベースではないのでとっつきにく い。 • どうしてもGUIがいいという方に は、R Commander
や、ggplot2を GUIで使えるesquisseパッケージ があります。 • とはいえ、ほとんどの分析手法は1 行でできるので恐れずに。
CUIが難しい • Rコマンダー ◦ パッケージ Rcmdr 。 ◦ 基本的な統計処理をGUIで実 行できる。
◦ 基本統計量、クロス集計、統 計的仮説検定、主成分分析、 因子分析、クラスター分析、回 帰分析など。 ◦ プラグインを追加すれば ggplot2でのグラフ作成もGUI で可能。
CUIが難しい • esquisseパッケージ ◦ Tableauっぽいインターフェイ スでggplot2によるグラフを描 ける。 ◦ 読み方は「エスキス」。 ◦
RStudioのアドインとして使え る。
★1つの手法にたくさんのパッケージがある 例えば、コレスポンデンス分析の場合 • caパッケージのca()関数 • FactoMineRパッケージのCA()関数 • MASSパッケージのcorresp()関数 などなど。他にもある。 どれ使えばいいのよ……
• それぞれのヘルプでアウトプットを確認して、自分に必要なのはどれかを見極め る。 • もしくは r-wakalang の #r_beginners あたりで先達に聞く。
★三つの書式が混在する • base ◦ 基本形。簡潔で探索的な分析に便利。 1984年生まれのS言語由来の古い書式。 ◦ 枯れていて安心……と思ったら最近になってパイプ演算子が追加されたり。 • tidyverse
◦ tidyverseパッケージ。 ◦ モダンなR。可読性が高く効率的。とりあえず、これで書くのが無難。 ◦ 枯れてないので、書き方がしょっちゅう変わる。 • data.table ◦ data.tableパッケージ。 ◦ 従来のdata,frameを拡張し、効率が良く巨大なデータファイルを扱える。 ◦ 大規模データでも高速に処理できる。
三つの書式が混在する • 事前準備 ◦ taidyverseとdata.tableのパッケージを読み込む。 ◦ データフレームをデータテーブルに変換する。 library(tidyverse) library(data.table) diamonds.dt
<- data.table(diamonds, key=c("carat", "cut", "price"))
三つの書式が混在する • caratが1より大きい行を抽出。 ◦ base ◦ tidyverse ◦ data.table res.base1
<- diamonds[diamonds$carat > 1, ] res.tv1 <- diamonds %>% filter(carat > 1) res.dt1 <- diamonds.dt[carat > 1, , ]
三つの書式が混在する • carat, cut, priceの列を抽出。 ◦ base ◦ tidyverse ◦
data.table res.base2 <- diamonds[, c("carat", "cut", "price")] res.tv2 <- diamonds %>% select(carat, cut, price) res.dt2 <- diamonds.dt[, c("carat", "cut", "price"), ]
三つの書式が混在する • グループごとの平均。cutごとにpriceの平均を算出。 ◦ base tapply(diamonds$price, diamonds$cut, mean) ◦ tidyverse
diamonds %>% group_by(cut) %>% ◦ data.table diamonds.dt[, mean(price), by = cut] diamonds.dt[, mean(price), by = cut] diamonds %>% group_by(cut) %>% summarize(mean(price) tapply(diamonds$price, diamonds$cut, mean)
三つの書式が混在する • base diamonds[diamonds$carat > 1, c("carat", "cut", "price")] |>
(\(x) tapply(x$price, x$cut, mean))() • tidyverse diamonds %>% filter(carat > 1) %>% select(carat, cut, price) %>% group_by(cut) %>% • data.table diamonds.dt[carat > 1, c("carat", "cut", "price"), ][, mean(price), by = cut] diamonds[diamonds$carat > 1, c("carat", "cut", "price")] |> (\(x) tapply(x$price, x$cut, mean))() diamonds %>% filter(carat > 1) %>% select(carat, cut, price) %>% group_by(cut) %>% summarize(mean(price)) diamonds.dt[carat > 1, c("carat", "cut", "price"), ][, mean(price), by = cut]
三つの書式が混在する • まずは、tidyverseを身に付けましょう。 ◦ 可読性が高く理解しやすい。 ◦ ネット上の資料も多く、チートシートなども充実していて学びやすい。 • data.tableは大きなデータのとき重宝する。 ◦
tidyverseで処理の重さを感じるデータには data.tableを試してみましょう。
★古い情報と新しい情報が混在する • 歴史がある分、ググってもどれが最新の情報か分かりにくい。 • 特にtidyverseは全然枯れていないので、あっという間に知識が古くなる。 ◦ 僕「gather( )とspread( )、縦持ちデータと横持ちデータを変換するのに超便利!」 ◦
H.W.「gatherとspread廃止したから。これからはpivot_*()使って。」 ◦ 僕「mutate_at()とmutate_if()とmutate_all()の使い方がようやく理解できた!」 ◦ H.W.「mutate_*廃止したから。これからはacross()使って。」 ◦ 基本的には機能的な改善なので歓迎すべきことなのだが ……
余談:インデックスが1から始まる • 他のコンピュータ言語を学んできた人からすると、インデックスが1から始まるのは 気持ち悪い(らしい)。 • 多くのコンピュータ言語ではインデックスは0からはじまる。 • 例えば、pythonなら • Rだと
Enjoy! ★CUIが難しい ★1つの手法にたくさんのパッケージがある ★三つの書式が混在する ★古い情報と新しい情報が混在する